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Abstract: The following document presents the results of a two year study 
into the feasibility of using wavelength-division-multiplexed solitons for data 
communications. Timing jitter caused by nonlinear interactions between multi- 
wavelength solitons was found to be a fundamental effect limiting the use of 
wavelength multiplexed solitons for data transmission. Such interactions can 
be described mathematically by a simple summation of all frequency shifts 
which occur during pairwise soliton collisions, and the resulting variance in 
pulse arrival times depends not only on perturbations to the fiber but also on 
the encoding of information. In a fiber with loss and amplification, it was shown 
that extensive wavelength multiplexing with solitons is feasible, and possibly 
preferable to other alternatives for achieving high aggregate throughput in 
computer communication systems. 



EXECUTIVE SUMMARY 

Here we briefly summarize the results of a two year investigation which 

studied the use of wavelength-division-multiplexed (WDM) solitons in optical 

fiber for communications and computing. The personnel directly involved in 

this research were Jon R. Sauer and R. Brian Jenkins, from the Optoelectronic 

Computing Systems Center, and Mark J. Ablowitz and Sarbarish Chakravarty, 

from the Program in Applied Mathematics. Others that were involved indi- 

rectly during some portion of the research include Christian Radehaus, Alan 

F. Benner, and Gregory Beylkin. Detailed results of this research can be found 

in several publications[1, 2, 3, 4]. The doctoral thesis by Brian Jenkins[l] is 

included as an Appendix. 

1.    General discussion 

With the development of erbium-doped fiber amplifiers, the limits on long- 

distance communication due to fiber loss have been greatly reduced. Hence, 

chromatic dispersion and fiber nonlinearities have become the prevalent effects 

preventing high-performance communication at multi-Gb/s data rates across 

distances greater than 102 km. Since anomalous dispersion is precisely balanced 

by nonlinear self-phase modulation in the soliton pulse, narrow solitons do not 

disperse even after propagating long distances. For this reason, the use of 

solitons for data transmission in fiber has become very attractive. However, 

solitons on a single wavelength channel still cannot efficiently use the immense 

bandwidth of the fiber. Practical technological limits on the electrical receiver 

bandwidth and on the modulation rates of semiconductor or fiber lasers prevent 

the transmission of data at very high rates, so the use of WDM for soliton 

communications may be necessary in high-performance systems. 



Data transmission over multiple wavelength channels is more com- 

plicated in a soliton system than in more traditional communication systems. 

Pulses on different wavelengths inevitably collide in a dispersive fiber as faster 

pulses in one wavelength channel overtake slower pulses in a different wave- 

length channel. In the typical linear transmission system, the effects of such 

collisions on communications are negligible. In a soliton system, though, pulse 

interactions are inherently nonlinear, and frequency shifts and timing displace- 

ments take place during collisions, possibly distorting data. 

In a lossless fiber, the effects of nonlinear soliton interactions would 

not typically degrade data. Any frequency shifts are only temporary[2, 5] — 

the soliton eigenvalue is conserved during the collision — and any timing dis- 

placements are nearly identical for adjacent pulses[6, 7], having minimal impact 

on data detection and the bit-error-rate (BER) at the fiber output. However, 

in a real fiber with loss and with amplifiers spaced periodically throughout the 

system, WDM soliton collisions may disrupt communications. When solitons 

collide in the presence of loss and amplification, the interaction is asymmet- 

ric, meaning that the attractive "forces" between the solitons are not balanced 

throughout the collision. Hence, the soliton eigenvalue and the soliton veloc- 

ity after the collision may be different from their values before the collision[5]. 

Such permanent frequency (velocity) shifts could potentially result in large 

timing displacements at the fiber output, thus degrading the BER. 

While it might seem that nonlinear interactions would prevent any 

use of WDM solitons for communication, it was demonstrated by Mollenauer, 

et. al.[5], that the effects of loss and amplification are path-averaged — the 

permanent frequency shifts reduce to zero — whenever the wavelengths or 



velocities of two soliton channels are close enough to insure that collisions 

occur over large distances relative to the amplifier spacing. Quantitatively, no 

permanent frequency shifts result if the collision length, defined as 

t-M- (1) 

is twice the amplifier spacing La. r is the full width of the pulse at half the 

maximum intensity (FWHM) in units of ps, D is the dispersion coefficient in 

units of ps/nm-km, and A is the wavelength spacing between two channels in 

units of nm. 

However, requiring that 

Lc>2La (2) 

limits a WDM soliton system to only a few wavelengths in a narrow spectral 

bandwidth. Using Eqs. (1) and (2), a maximum wavelength spacing of 

T 
Amax = nr (3) 

DL a 

may be derived, which defines the bandwidth over which soliton wavelength 

channels may be multiplexed according to Eq. (2). For values of r < 50 ps, 

D = 1 ps/nm-km, and La = 25 km, all wavelengths must fit in a bandwidth of 

Amax < 2 nm. This is rather restrictive for WDM, considering that the useful 

gain-bandwidth of an erbium-doped amplifier is at least 20 nm. 

Nearly all previous WDM soliton research has assumed that Eq. (2) 

is a necessary condition for data transmission to be feasible if WDM solitons 

are used. In analyzing the interactions between WDM solitons, we recognized 

that Eq. (2) is more restrictive than necessary for many systems environments. 

One example would be a long-distance computer interconnect where the dis- 

tances may be shorter than 104 km, as is typically required in transoceanic 



communication links. In effect, Eq. (2) prevents the occurrence of worst-case 

frequency shifts, and much more extensive use of WDM — with many wave- 

length channels and a high degree of flexibility in choosing channel frequencies 

— may still be possible for soliton communication if the system is designed 

simply to achieve optimum performance at a predetermined BER. 

2.    Research results 

The most important results of the research are as follows: 

• We have analytically determined (and numerically verified) the fre- 

quency shifts which take place during collisions between solitons on an 

arbitrary number of wavelength channels. 

• We have statistically predicted the WDM soliton collision-induced tim- 

ing jitter that results in a practical fiber communication system assum- 

ing that amplifiers are necessary to compensate fiber loss. 

• We have shown that solitons can be used for WDM communications 

to a greater degree than previously thought. This is especially true in 

communication systems that are shorter than transoceanic telecom- 

munication links. Most WDM soliton systems of practical lengths 

could achieve BERs less than 10-9 even under conditions which vi- 

olate Eq. (2). 

2.1. Analytic derivation of 7V-soliton interactions To ana- 

lyze the performance of a WDM soliton system, it is necessary to understand 

how multiple solitons interact during collisions. Most WDM soliton research 

has dealt only with the interaction that occurs when two solitons on different 

wavelengths collide. While it has always been assumed that the interactions 

in the spectral domain are additive in a pairwise fashion — in analogy to 
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the pairwise timing displacements originally demonstrated by Zakharov and 

Shabat[8] — when greater than two solitons collide, this has never been proven 

analytically. Through an asymptotic analysis of the exact iV-soliton solution 

of the nonlinear Schrödinger equation, we have demonstrated that interactions 

are additive in the spectral domain only to first order in terms of the inverse 

frequency spacing 1/A/ between channels [2]. 

Practically, this means that during an iV-soliton collision the inter- 

action can be treated mathematically as a group of independent two-soliton 

interactions if the wavelength channels are not multiplexed too densely in 

wavelength. From a quantitative viewpoint, if the normalized WDM frequency 

separation 0, is much greater than one, where ft = 27rA/r/1.763 and A/ is 

the physical channel spacing in hertz, the shift in the frequency flp of the pth 

soliton channel is approximately 

SÜP -LET fP\(c  v   forp = l,...,iV. (4) 

The quantity, 

Opg      -—      Jp        Oq 

=      \    P       »"q)Z        [J'op oq) 

=   (p ~ <l)tiz - (t0p - toq), (5) 

defines the temporal separation between two solitons, one on the pth channel 

and one on the <jth channel, such that when Spq = 0, the center of the collision 

is located at position z in the fiber. The parameters top, for p = l,...,iV, 

define the initial timing of the solitons on the N wavelength channels, so that 

by varying the values of top, the amount of overlap between the N solitons 



during the collision is generalized for arbitrary initial conditions at the fiber 

input. 

As frequency spacings become small, i. e., as the wavelength channels 

are more densely multiplexed, the total interaction during a collision is not 

described by the straightforward summation over the N channels, as in (4). 

Higher-order terms proportional to 1/fi2,1/fi3,... must then be included to 

fully describe the spectral interactions. However, for values of Ü as small as 

5.61, the error in using Eq. (4) is still only 5%. This value of O corresponds 

to a channel spacing of five soliton spectral widths, or A/ = 5(0.3148)/r, as is 

necessary to insure that frequency shifts during collisions at the fiber output 

will not be too large[9]. Translated into physical quantities using A = A2 A//c, 

where A is the wavelength and c is the speed of light, (4) is still approximately 

correct for channel spacings of A = 0.25 nm with r = 50 ps channels and A = 

0.625 nm for r = 20 ps channels, where the center wavelength is A = 1.55 //m. 

2.2. Timing jitter in WDM soliton systems An original goal 

of this research was to statistically predict the the final values of the soliton 

wavelengths at the fiber output after many collisions had taken place. Upon 

further analysis, it was seen that the variance in the soliton arrival times at 

the fiber output is much larger relative to the bit period than is the variance 

in the wavelength with respect to the channel spacing; system performance 

depends more on the variance in pulse arrival times, or timing jitter, than 

on frequency (or wavelength) jitter. Hence, we have determined the timing 

jitter that results in WDM soliton systems that have an arbitrary number of 

wavelength channels[l, 3]. 

Suppose we define the arrival time of a soliton in the jth bit slot of a 



given wavelength channel as tj. If the arrival time of another soliton p bit slots 

later on the same wavelength is ij+p, then the absolute difference in the arrival 

times would ideally be given by pT, where T is the bit period. In reality, 

though, collisions with solitons on other wavelengths cause jitter in the arrival 

times, such that 

tj+p-tj = pT + At, (6) 

where At is used to define the jitter in the relative arrival times of the two 

solitons. If At is negative, the two solitons have moved closer together at the 

fiber output, whereas if At is positive, they have moved farther apart. In either 

case, if \At\ is too large, data may be distorted. 

From a statistical viewpoint, we have shown that the jitter in a WDM 

system with JV = 2 is normally distributed with variance 

The quantity n = LDA/T is the number of collisions which occur across the 

full length L of the fiber and (AA2) is the variance in the permanent wave- 

length shifts which result from WDM soliton collisions. Since (AA2) may take 

on different values depending on perturbations to the fiber, Eq. (7) is a gen- 

eral result which holds for somewhat arbitrary perturbations. As an example, 

(AA2) could be defined in a fiber where the only perturbations are loss and 

amplification, or other perturbations, such as dispersion variations in fibers 

making up a link, could be included well[5]. Eq. (7) agrees well with recent 

results[7] which numerically predicted WDM soliton timing jitter. 

Of greater importance is the variance (Ai2) in each channel of a WDM 

system having as many as N channels. Eq. (4) demonstrates independence 

in the frequency shifts experienced by each channel if the channel spacings 



are wide enough. Hence, it is easy to modify Eq. (7) if there are multiple 

wavelength channels. The total variance in the relative arrival times of adjacent 

solitons in the pth of N channels is simply a sum of the variances resulting from 

interactions with the other N — 1 channels, as in 

(A4 = EW3 (£)2i^k'   forp=l,...,tf. (8) 

The number of collisions, the channel spacing, and the variance in the wave- 

length shifts between the pth and gth channels are represented by npq, Apq = 

(p — q)A, and (AA2)pg, respectively. 

To estimate the bit-error-rate(BER) resulting from Eq. (8), we make 

an assumption about how much jitter the receiver can tolerate by defining a 

parameter r to measure receiver sensitivity. If the bit period T = 5r and if 

the maximum value of \At\ allowed by the receiver is given by rT = 5rr, 

the receiver is more sensitive to jitter in the arrival times as r decreases. The 

actual value of r in a system cannot be defined precisely without knowing more 

details about the receiver, but as an example, if r = 2/5, then \At\ must be less 

than 2r for the receiver to detect data accurately. If two solitons were initially 

separated by one bit period T = 5r at the input, they may be spaced no closer 

than 3T and no farther than IT at the output for the receiver to detect each 

bit. If p = 3 between two solitons, the initial spacing is 3T = 15r, so they must 

be separated by at least 13r and by at most 17r at the fiber output for the 

receiver to properly detect data. Since At is Gaussian distributed, the BER in 

the pth channel can then be computed using 

BERp = erfc (rT/y/2(At2),) ,   for p = 1,... ,7V, (9) 
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where the complementary error function is defined according to 

erfc (x0/V2) = 4= T exp(-*2) dx. (10) 

The BER is 10"9 when x0 = 6.1 and 10~12 when x0 = 7.1, where x0 = 

2.3. System implications of WDM soliton collisions Most 

soliton research has attempted to solve the problems of communication in 

long-distance transoceanic transmission links. While the restriction denned 

by Eq. (2) may be meaningful in such systems, it is not necessarily a realistic 

limitation for all communications and computing systems. Eqs. (8) and (9) 

provide the flexibility that is necessary to predict the feasibility of using WDM 

solitons in many different systems environments. 

Since npq is proportional to the fiber length L, Eqs. (8) and (9) can 

be used to define a maximum length that can be achieved for a given number 

of channels and a predetermined BER. It is also possible to use these equations 

to determine the maximum value of N at a given length and data rate R = 

l/(5r) = 1/T to insure a given BER. The results are depicted by the solid 

curves in Fig. 1, where the maximum value of L is plotted as a function of the 

FWHM and the data rate R per channel for various values of N, and in Fig. 2, 

where the aggregate throughput NR is plotted for various L. In these plots, 

the BER is required to be no greater than 10~9. Other system parameters have 

been chosen as D = 1 ps/nm-km at a wavelength of 1.55 ^m, La = 25 km, and 

r = 2/5. All lengths are reduced by 10% if the required BER is 10-12 or by 37% 

if r = 1/5. With five soliton spectral widths between adjacent wavelengths, the 

channel spacings vary from A = 0.625 nm at T = 20 ps to A = 0.25 nm when 

r = 50 ps. These plots describe the system performance as limited by loss and 
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Figure 1. Maximum system length with N channels at a 10~9 BER as limited 
by collision-induced timing displacements. The dashed curve illustrates the 
maximum length possible if all channels meet the condition that Lcj'La > 2 and 
the dotted curve indicates the maximum system length as limited by Gordon- 
Haus jitter. 

amplification, so if either the channel spacing A, the amplifier spacing La, or 

the dispersion D decreases, the ratio Lc/La increases, so that wavelength shifts 

are smaller and aggregate throughput is greater. 

When Lc/La > 2, as depicted by the dashed line in each figure, WDM 

soliton transmission is possible to a distance of 20000 km when r = 20 ps and 

to longer distances when r is greater than 20 ps. However, the number of 

20-ps channels is limited to two and the number of 50-ps channels is limited to 

nine (as seen by dividing the throughput NR on the dashed line in Fig. 2 by 

the data rate R). If Lc/La is less than two, then the system length must be 

shorter but more channels are allowed, giving greater aggregate throughput. 



12 

10 
Rate/channel R (Gb/s) 

6.67                                            5 4 
400 1                                                i 

; 

(G
b

/s
ec

) ca
 

o
 

o
 "- -_ 

T
h

ro
u

gh
p

u
t 

R
N

 

O
   

   
   

   
   

   
   

   
   

 O
 

o
   

   
   

   
   

   
o 

\ 

L = 2500 km/ 

5000^---^ 

-"""^  10000 

j 

- WK i 2 '-. 

0 - 
-r-* ' 

20 30 
FWHM T (ps) 

40 50 

Figure 2. Maximum throughput in a WDM soliton system for various lengths. 

For example, in a system 2500 km in length with r = 40 ps, 32 channels with 

an aggregate throughput of 160 Gb/s are possible in theory. The bandwidth 

over which the channels are multiplexed is 31 (.315) « 10 nm, less than the 

gain-bandwidth of an erbium-doped fiber amplifier. The minimum value of 

Lc/La = 2(40)/l(10)(25) = 0.32, which occurs between channels 1 and 32, is 

much smaller than two. 

We can also compare the effects of collision-induced jitter to Gordon- 

Haus jitter[10], as depicted by the dotted line in Fig. 1. With many wavelength 

channels or high data rates, we see that the length will probably be limited by 

WDM soliton collision-induced jitter, whereas Gordon-Haus jitter is more likely 

to limit the length of systems with fewer channels and lower data rates. In a 

recent WDM soliton experiment[11] using 60-ps solitons, eight 2.5 Gb/s chan- 

nels were transmitted 10000 km with error rates below 10~10.  The channels 
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were densely multiplexed with A = 0.2 nm in order to reduce collision-induced 

jitter. Fig. 1 indicates, though, that this system is more likely limited by 

Gordon-Haus jitter. Although collision-induced jitter increases if A is larger 

(since collision lengths Lc are shorter), estimates of jitter using Eq. (8) indi- 

cate that channel spacings much larger than 0.2 nm would be feasible before 

collision-induced jitter would impact such a system. Hence, our results show 

that much greater flexibility is possible in choosing channel wavelengths than 

has previously been assumed in WDM soliton systems. 

Finally, from an intuitive standpoint one might expect the throughput 

in Fig. 2 to increase as the data rate R per channel increases, but our results 

show the opposite. As R increases, the number of collisions and the magnitude 

of the wavelength shifts increase substantially for fixed L, so the number of 

channels N decreases rapidly. In fact, with system parameters defined as in 

Figs. 1 and 2, jitter prevents the transmission of even two WDM soliton chan- 

nels at a data rate of 11 Gb/s per channel across a distance of 10000 km (see 

Fig. 5.14 in the Appendix[l]). Thus, the fundamental limit on throughput due 

to collision-induced velocity shifts is less restrictive using many slower (and 

cheaper) channels. While it is unlikely that aggregate throughputs as high as 

356 Gb/s, as shown in Fig. 2, can be achieved in the near future — due to 

practical issues such as four-wave mixing or other amplifier effects, the curves 

in Fig. 2 suggest that greater use of the spectral domain, using many slower 

WDM soliton channels, is more likely to increase aggregate system performance 

than will the simple use of higher data rates. With advances in filtering tech- 

niques, WDM soliton transmission is likely to become the preferable means of 

achieving high-performance data communication in optical fiber. 
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APPENDIX 

Included here is the doctoral thesis by Brian Jenkinsfl], which dis- 

cusses the previous results in greater detail. Chapters 1 and 2 from the thesis 

provide an introduction and describe experimental results. Chapter 3 pro- 

vides all the analytic theory needed to understand the results presented in 

Section 2.1. of the Executive Summary. The results from Section 2.2. are 

examined primarily in Chapters 4 and 5 of the thesis, and the results of Sec- 

tion 2.3. are explained in Chapter 5. Chapter 6 provides a more comprehensive 

list of conclusions which resulted from the research. 
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Jenkins, R. Brian (Ph.D., Electrical Engineering) 

Wavelength Multiplexed Solitons in Fiber Communication Systems 

Thesis directed by Professor Jon R. Sauer 

Optical fiber is widely used for data communication because of its 

large bandwidth and low loss between the wavelengths of 1.2 and 1.6 /zm. High- 

performance communication in fiber is often limited by dispersion or nonlinear 

effects as the bit rate or system length increases. Fortunately, a stable solu- 

tion of the nonlinear Schrödinger equation, which describes pulse propagation 

in fiber, is the soliton pulse, which relies on both dispersion and fiber nonlin- 

earity to ensure stable pulse propagation at high bit rates over thousands of 

kilometers. With the development of erbium amplifiers, soliton propagation is 

even more appealing, since optical amplifiers passively compensate fiber loss 

while solitons passively compensate fiber dispersion. 

To efficiently utilize fiber bandwidth, it may ultimately be necessary 

to use wavelength multiplexing. Soliton transmission on multiple frequencies, 

however, is complicated by nonlinear interactions — frequency (wavelength) 

shifts and velocity shifts — when solitons collide in the fiber. Consequently, it 

is thought that extensive wavelength multiplexing will be difficult to achieve 

with solitons. Through primarily analytical and numerical methods, this thesis 

examines such issues, predicting timing jitter, bit-error-rates, and performance 

in wavelength multiplexed soliton systems. It is demonstrated that wavelength 

multiplexing is likely to be the best alternative for achieving high aggregate 

throughput in a soliton communication system. 
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CHAPTER 1 

INTRODUCTION 

Modern communication systems often require large amounts of data 

to be transferred over long distances. Optical fiber is useful for such commu- 

nications because of its low loss and low dispersion, especially at wavelengths 

in the near infrared portion of the electromagnetic spectrum. Fiber is becom- 

ing common over shorter distances as well because of its large transmission 

bandwidth and its insensitivity to crosstalk; it is not unusual to hear the term 

"fiber to the curb". However, for high performance communications, fiber is 

still limited by several effects; dispersion and loss restrict data transmission 

over longer distances, and fiber nonlinearities limit data rates as the bit period 

approaches the period of the optical carrier frequency. 

The soliton pulse appears to be the most natural answer to the prob- 

lems of dispersion and nonlinearity. Solitons are simply pulses in which lin- 

ear group velocity dispersion is balanced by the nonlinear spectral dispersion 

known as self-phase modulation. Hence, solitons maintain their shape and ve- 

locity over long distances. The development of the erbium-doped fiber amplifier 

(EDFA) has made soliton communication especially attractive, since an EDFA 

passively counteracts loss without changing the optical data into an electronic 

format. Because of their insensitivity to loss and amplification, solitons have 

been transmitted across distances as long as one million kilometers at data 

rates of 10 Gb/sec[l]. However, even solitons are unable to efficiently use the 



entire fiber bandwidth. Higher order dispersive effects, other nonlinearities, 

and the simple problem of generating and detecting high speed pulses prevents 

the transmission of solitons at very high rates. 

Wavelength-division-multiplexing (WDM) may be the most effective 

way of exploiting the immense fiber bandwidth in the low loss region between 

1.2 /im and 1.6 /zm. WDM uses the spectral domain and the parallelism of 

optics as a means of overcoming restrictions on communication in the time 

domain. While using WDM for data transmission is not new, its application to 

soliton communication has only recently attracted attention as the fundamental 

problems of communicating in the time domain have been better understood. 

Encoding data on soliton channels having different wavelengths, though, has 

its own complexities. A soliton is a nonlinear phenomenon, and the niceties of 

linear systems, such as superposition, are not inherent in nonlinear systems. 

Solitons encoded on different wavelengths propagate with different 

velocities because of dispersion, inevitably colliding with one another as faster 

solitons overtake slower solitons. When linear pulses on different wavelengths 

collide in a fiber, linear superposition holds, oftentimes without any degra- 

dation of data. When solitons on different wavelengths collide, nonlinear in- 

teractions take place, distorting both the time and frequency domain. While 

interactions during collisions between solitons on two wavelength channels have 

been studied for some time, interactions between an arbitrary number of soliton 

wavelength channels are not well understood. Furthermore, current theoreti- 

cal restrictions on WDM soliton systems are overly conservative, as they are 

based on unrealistic assumptions about the fiber communication system. Esti- 

mates of performance, including issues such as timing jitter or bit-error-rates, 



have never been formulated for WDM soliton communications. The goals of 

this thesis are to study interactions between WDM solitons, and to develop 

more realistic predictions of their usefulness for fiber communications, using 

numerical, analytical, and experimental techniques. 

In this chapter, basic issues such as dispersion and self-phase modu- 

lation are analyzed, so as to provide the reader with a fundamental physical 

and mathematical understanding of soliton communication in fiber. In Chap- 

ter 2, we examine how solitons are generated and discuss related experimental 

results. In Chapter 3, we consider how WDM soliton interactions affect prop- 

agation in a rigorous mathematical analysis of soliton collisions in an ideal, 

lossless fiber. The analysis is generalized for an arbitrary number of wave- 

length channels, whereas previous research dealt with at most two channels. 

Chapter 4 examines how collisions are perturbed by loss and amplification. 

Finally, in Chapter 5, we determine how WDM soliton interactions affect the 

transfer of data in the fiber, deriving expressions for timing jitter and bit-error- 

rates in a system with an arbitrary number of wavelength channels. Previous 

WDM soliton systems did not account for the stochastic properties of a digital 

communication system, so the results enable us to predict how future systems 

might be practically designed to optimize performance. Conclusions will be 

drawn and suggestions for future research are discussed in Chapter 6. 

1.1    Soliton propagation in fiber 

Before discussing soliton propagation, it is useful to understand two 

effects which degrade fiber communications when occurring by themselves — 

dispersion and self-phase modulation. 



1.1.1 Dispersion A fiber is dispersive in several ways. In mul- 

timode fiber, modal dispersion limits data rates and fiber lengths as different 

modes travel different paths in the fiber, arriving at the fiber output at dif- 

ferent times. In birefringent fiber, energy in orthogonal polarizations travel 

with slightly different velocities, causing polarization mode dispersion. Over 

very long distances, polarization mode dispersion can be important even in 

standard fiber. For high performance communications in single mode fiber, 

the type of dispersion we are most interested in is chromatic dispersion — dif- 

ferent wavelengths or frequencies of light travel with different velocities in a 

fiber. This is the dominant dispersive effect in standard single mode fiber and 

results because the index of refraction n is a function of the wavelength. For 

pure silica, the index variation is shown in Fig. 1.1, as derived in a Sellemeier 

approximation of the index for pure silica[2]. The group velocity of a pulse is 

related to the group index of refraction, 

dn 
ng = n- A—, (1.1) 

by the relation vg = c/ng, where c is the speed of light and A is the wavelength 

in free space. The group index is also plotted in Fig. 1.1. In reality, one 

must use the effective group index of the fiber to describe pulse evolution, as 

it is the index which describes the propagation of the mode in the fiber. The 

effective index takes on a value between the bulk indices of the fiber core and 

cladding[2]. Since the group index is around 1.5 and c = 3 x 108 m/s, the 

group velocity vg is approximately 0.2 mm/ps. 

To estimate group velocity dispersion (GVD), a parameter 
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Figure 1.1: Index of refraction and group index of pure silica. 

is denned which has dimensions of ps/nm-km. D is called the dispersion co- 

efficient, as it describes how the inverse group velocity varies with respect to 

wavelength; often it is expressed in terms of its variation with respect to fre- 

quency u, in which case its dimensions are ps2/km. In terms of n, 

\d2n 
D 

cdX2' 
(1.3) 

where D is plotted versus A in Fig. 1.2. Note that the dispersion coefficient 

(and the slope of the group index) changes sign around 1.28 (xm. For wave- 

lengths greater than 1.28 /im, pulses with higher frequencies travel faster than 

pulses with lower frequencies, while the opposite occurs at wavelengths shorter 

than 1.28 /xm. Two regimes of dispersion are defined accordingly — dispersion 

is anomalous when D is positive and dispersion is normal when D is negative. 
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Figure 1.2: Dispersion coefficient in pure silica. 

Soliton communication in fiber almost always takes place in the anomalous 

regime. Note that the variation in the dispersion coefficient is approximately 

linear in this regime. In fiber, dispersion associated with the waveguide ge- 

ometry can be used to translate the point of zero dispersion to values around 

1.55 /im, the wavelength where loss is minimized in silica fiber. Such a fiber, 

known as a dispersion shifted fiber, is the type most commonly used for soliton 

communication for reasons we shall see later. 

To understand the effect of GVD on a pulse, solving Maxwell's equa- 

tions shows that each spectral component in single mode fiber propagates ac- 

cording to[2], 

E(z,u) = E(0,u)exp(ißz). (1.4) 



E(0,LJ) is the initial spectral representation of the wave which propagates down 

the longitudinal dimension z of the fiber with propagation constant ß. We 

have assumed that the light is linearly polarized and that the field in the 

transverse dimensions x and y corresponds to the fundamental fiber mode, 

oftentimes approximated by a Gaussian distribution. The temporal variation 

of the longitudinal scalar field is given by the inverse Fourier transform of 

E(z,u), 

1    r00  ~ 
E(z,t) = —        E(z,u)exp(-iu>t)du. (1.5) 

If the wave is actually a pulse having an envelope which varies slowly 

with respect to an optical carrier with frequency u0 and wavelength A0, then 

the field is represented by 

E(z, t) = F(z, t) exp[-i{u0t - ß0z)], (1.6) 

where F(z,t) describes the variation of the envelope in time and space and 

ß0 = 2Trn0/\0 = n0k0. The group index of refraction at u0 is n0. Since 

the envelope varies slowly in time, the spectral bandwidth is small and the 

wavenumber ß may be written as a Taylor expansion about u0, 

ß-ß. = f (u — 0Jo) + - 
2d, w 

(w - u0)
2 + 

«     ß^U-^ + ^-^-Uof. (1.7) 

The first and second derivatives of ß around the frequency at ui0 are represented 

as ßi and ßi- Higher order terms are neglected in a slowly varying envelope 

approximation when pulse widths are on the order of picoseconds and when 

the center wavelength A0 is not too close to the zero dispersion point (1.31 yum 

in a standard telecommunications fiber). At A0, the group velocity is vg = l//?i 



and the dispersion coefficient is related to ß2 by 

C = -ff)A- (1-8) 

By solving for F(z,t) in Eq. (1.6) and substituting for E(z,t) from 

Eq. (1.5) and for E(z,u) from Eq. (1.4), 

1     Z"00   ~ 
F(z,t)=—        E{0,u)exp[i(ß-ßo)z-i{u-Lüo)t]du. (1.9) 

ZTT J-OO 

It can be seen from Eq. (1.9) that ß—ß0 and u>—u0 may be replaced by operators 

—i(d/dz) and i(d/dt), respectively, so that Eq. (1.7) may be rewritten (upon 

multiplication by F) as the propagation equation of the pulse, 

.dF      .BF     ß2d
2F ,       N 

If ß2 = 0, then F(z,t) = F(0,t — ßxz) and the pulse travels without any change 

in shape. 

Typically, Eq. (1.10) is translated into the coordinate frame of the 

pulse moving at group velocity vg by a transformation of variables i — ßxz —> t. 

In the moving reference frame, Eq. (1.10) becomes 

.OF     ß2d
2F 

(1.11) 
dz      2 dt2 ' 

The origin in t is now always at the center of the pulse. When ß2 ^ 0, the phase 

in Eq. (1.4) changes differently for individual spectral components as z increases 

since ß is a function of u>. While such changes affect only phase in the spectral 

domain, the pulse shape is modified in the time domain. In the anomalous 

dispersion regime (A0 > 1.28 /mi in Fig. 1.1), the pulse develops a chirp as it 

propagates, with higher frequencies moving to the front of the pulse and lower 

frequencies moving to the back.   The chirp degrades data communications if 
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individual bits disperse into neighboring bits time slots. Figure 1.3 depicts 

the maximum bit rate for a given fiber length limited by dispersive effects 

under several conditions. The solid curves depict the allowable bit rates in a 

standard telecommunications fiber at 1.55 /im with D = 16 ps/nm-km when 

the linewidth AA of the source dominates (AA = 1 nm) and when the pulses 

are transform limited (AA <C 1 nm). The dashed curves describe propagation 

in a dispersion shifted fiber with D — 1 ps/nm-km[2]. 

1.1.2     Fiber nonlinearity      In a nonlinear dispersive medium, the 

refractive index is dependent on the intensity / and the frequency of the light, 

n \u),I) = n(u>) + n2L (1.12) 
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The index at u0 approaches n0 as / approaches zero. The nonlinear coeffi- 

cient n2 is related to x^\ the nonlinear susceptibility tensor which is used 

to determine the nonlinear component of the polarization vector in Maxwell's 

equations[3]. Since ß = n(u>)u)/c — n(u) k, the expansion in Eq. (1.7) must 

now include an additional term describing the nonlinearity 

ß-ß0 = ß1(u- u0) + ^{u - u0)
2 + k0 n2 I. (1.13) 

In a derivation analogous to that for Eq. (1-11), the equation describing prop- 

agation in a purely nonlinear medium when ß2 = 0 is 

8F 
l-Q-z=-l\F\2F. (1.14) 

The factor 7 = k0 n2jA^ and /leff = ^r2 is the effective area of a propagating 

mode with radius r.   In a dispersion shifted single mode fiber, r is usually 

around 4 /mi, so Aeft is typically about 50 /mi2.  The nonlinear coefficient in 

silica fiber is n2 = 3.2 x lO"16 cm2/W, so 7 = 2.6 (W-km)"1 at 1.55 /im. 

The solution of Eq. (1.14) is 

F{z, t) = F(0, t) exp[ifa(z,t)], (1.15) 

where F(0, t) is the initial field and the nonlinear phase factor is 

M^t)=l\F\2z^k0n2Iz. (1.16) 

By substituting Eq. (1.15) into Eq. (1.6), the full phase of the wave is <j> = u0t — 

ß0z — (f>x^(z,t). Since the instantaneous frequency equals the time derivative of 

the phase, the instantaneous frequency across the pulse is 

u = — =u0 - k0n2 — z, (1-17) 
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and the pulse is chirped as it propagates. For propagation in the positive z 

direction and with positive n2, the instanteous frequency is smaller than u0 on 

the rising edge of the pulse where dl/dt is positive, while it is greater than 

u0 on the trailing edge where dl/dt is negative. Hence, as z increases, lower 

frequencies move to the front of the pulse and higher frequencies move to the 

back. The intensity of the pulse itself modulates the phase and causes the chirp. 

Hence, the name given to this nonlinear effect is self-phase modulation(SPM). 

Note also from Eq. (1.17) that more and more frequencies are added to the 

spectrum of the pulse as z gets larger. SPM is a nonlinear dispersive effect, but 

the dispersion takes place in the spectral domain; the temporal pulse envelope 

in Eq. (1.15) maintains its shape for all z if we assume that D = 0 ps/nm-km. 

1.1.3 Temporal solitons By themselves, GVD and SPM de- 

grade communications in the fiber. When occurring together, an interesting 

phenomenon results. Figure 1.4 depicts the behavior of each effect by itself 

and the result when both occur. The top plot depicts the chirp resulting from 

SPM in a medium having a positive n^. Lower frequencies move to the front 

of the pulse and higher frequencies move to the back. In the second plot, the 

chirp of a pulse under the effect of anomalous GVD is illustrated; the chirp is 

opposite that due to SPM. If the intensity of a pulse is chosen properly in a 

medium exhibiting both GVD and SPM, these effects balance as shown in the 

third plot. No chirp results and no pulse degradation takes place. Such a pulse 

is a temporal soliton — a solitary wave bound in time. 

The equation describing soliton propagation is the combination of 

Eqs.(l.ll) and (1.14), 
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Nonlinear media 

Linear dispersive media 

Nonlinear dispersive media 

Time  -> 

Figure 1.4. Pulse chirp after propagation in a dispersive, nonlinear, and non- 
linear dispersive medium. 

It is usually more convenient to describe solitons with this equation by normal- 

izing so that the equation is dimensionless. The time, space, and amplitude 

are scaled in terms of soliton units tc, zc, and \fP~0'- 

tc 
Z 

IPr, 

(1.19) 

(1.20) 

(1.21) 

The factors zc and P0 are the soliton characteristic length and peak power, 

respectively, as defined by 

Zr   = 

P --A 

(1.22) 

(1.23) 
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where tc is the half-width of the soliton at amplitude \/^sech(l). Since P0 is 

the soliton peak power, P0/AeR is the peak intensity required to exactly balance 

the effects of GVD and SPM. Different variables' could be chosen to represent 

z and t at this point, but such a convention is confusing. Let it suffice that any 

mathematical equations involving an amplitude u will immediately indicate 

that dimensionless quantities are being used in all parameters including time 

and space. If the meaning of t and z are unclear, their meaning will be explicitly 

stated. (Recall that the variable t was already renamed in Eq. (1.11) so that 

the full transformation at this point is t~^lZ —> t). 

The dimensionless propagation equation is known as the nonlinear 

Schrödinger equation(NLSE) and is written 

.du      ld2u     .  ,9 .„ „,. 

-& = iw +'-' "• (L24) 

The general solution to the NLSE[3] is a fundamental soliton, 

u(z, i) = A sech[A(t - t0 + Hz)] exp[-tß< + i(A2 - Ct2)z/2 - i<f>0].      (1.25) 

The parameters A, Cl, t0, and <f>0 are variables defining a normalized peak am- 

plitude (inverse pulse width), a normalized frequency (inverse group velocity), 

an initial time and an initial phase. For convenience, we can assume the initial 

time and phase are zero and that A = 1, so that 

u(z, t) = sech[t + üz] exp[-iSlt + i(l - 02)z/2]. (1.26) 

If A = 1, the normalized peak amplitude and pulse width are both unity, so 

the actual peak power of the soliton is P0 and its physical pulse width is tc, 

using Eqs. (1.19) and (1.21). A soliton mathematically scaled according to 

Eqs. (1.19-1.23), but having a pulse width and amplitude different than tc and 
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y/PÖ, would require A ^ 1. Since the pulse width tc is the "half-width" of the 

soliton, the soliton physically takes the form of \fPZs,ech(tltc). The soliton 

width is more commonly described by the full width at half the maximum 

intensity(FWHM), given by r = 1.763 te. 

Figure 1.5 illustrates the evolution of the soliton pulse envelope in 

the normalized reference frame, as in Eq. (1.26) with Q = —10; the envelope 

is similar to a Gaussian pulse. Since the spatial dimension of the soliton is 

scaled by the characteristic length zc, a soliton that has travelled one spatial 

unit as in Fig. 1.5 has travelled a physical distance of zc. This corresponds to 

the length over which a Gaussian pulse of width tc would disperse to a width 

\/2£c because of first order dispersion /?2- The soliton period z0 = (TT/2)ZC is 

the parameter more commonly chosen to describe soliton propagation. Figure 

1.6 depicts the variation of P0 and z0 in a dispersion shifted fiber with D = 1 

ps/nm-km. The soliton period z0 decreases and the fundamental soliton power 

P0 increases in a more dispersive fiber as defined by Eqs. (1.22) and (1.23). 

We will mostly be concerned with solitons having pulse widths greater than 10 

ps and periods greater than 100 km, which require peak powers on the order 

of milliwatts. Propagation of higher order solitons takes place whenever P0 is 

greater than the fundamental soliton power. The propagation of such pulses is 

more complicated and their evolution is periodic with respect to z0 as we shall 

see in Section 1.3.4. 

The meaning of 0 in Eq. (1.26) is most easily described by analyzing 

the spectral domain. When Cl = 0, the frequency of the soliton is identical to 

the physical frequency u0 and the corresponding group velocity of the reference 

frame. Different values of Q, correspond to solitons with frequencies and group 
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Figure 1.5: Envelope of soliton intensity in time and space. 
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Figure 1.6. Fundamental soliton peak power required at the given soliton pul 
width and period when D = 1 ps/nm-km. 
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velocities different than that of the moving reference frame. This is especially 

useful to understand since the primary thrust of this thesis is to analyze solitons 

multiplexed by frequency. The Fourier transform of the soliton envelope is 

/oo 
u(z, t) exp(iut )dt, (1-27) 

-oo 

where u(z,t) is the normalized solution of the NLSE given in Eq. (1.26), such 

that to now refers to radial frequency in a normalized frequency domain. With 

a change of variables, s = t + ftz, Eq. (1.27) becomes 

/oo 
sech(s) exp[i(u> — tt)s]cb, (1.28) 

-oo 

where $ = (1 - 2Qu> + Q2)z/2. Since 

(1.29) 
T 

sech(as)    <->   ^ sech[7rw/(2a)], 

then 

ü(z, u) = T sech[7r(u; - fi)/2] exp(i$). (1.30) 

Thus, the spectrum of u(z, i) consists of a single spectral peak at u = fi. 

To scale u back into a physical frequency, we divide by tc, so 

tl/tc = 2TTA/, (1.31) 

where the frequency of the normalized peak at 0 is different than the physical 

reference frequency u0 by A/ in Hz. The normalized half width of the spectral 

peak in Eq. (1.30) is 2/7T, so the physical half width in rad/s is 2/(irtc). Since 

half widths are changed to the FWHM by the factor 1.763 (recall that r = 

1.763 tc), the time-bandwidth product of a soliton is 

T6V = 0.315, (1.32) 
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where 8v is the spectral FWHM of a soliton having a pulse width of r. Figure 

1.7 illustrates the corresponding spectral evolution of the soliton in Fig. 1.5 for 

Cl = —10. Since Q also represents an inverse group velocity in Eq. (1.26), the 

pulse moves 10 time units backwards for each spatial unit; the inverse group 

velocity of the pulse is physically v'1 = ßi+ß2(0,/tc). The dispersion parameter 

/?2 is negative in the anomalous dispersion regime, so if fl = —10, the pulse 

moves slower than the reference frame, consistent with Fig. 1.5. For example, 

when tc — 28 ps and r = 50 ps, the pulse is delayed ten normalized time units 

or 280 ps with respect to the moving frame in Fig. 1.5. The frequency of the 

soliton is less than u>0 by A/ = 57 GHz and its spectral width is 8v = 6.3 GHz. 

If the wavelength corresponding to the reference frame is A0 = 1.55 //m, the 

ior 

ö 

^rr« C^>A.^T"-*3V 

Figure 1.7: Spectral evolution in space of a soliton with tt = —10. 
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wavelength of the pulse is larger by 0.46 nm (since 0.46 = 57 (1550)2/(3 x 108)). 

A word should be said here about other conventions oftentimes used 

to describe soliton propagation. The convention that is probably used most 

often is in the literature relating to applied mathematics[4, 5]. The form of the 

NLSE is somewhat different; 

.du      d2 u 

dt     dz2 

and its solution is 

+ 2\u\2u, (1.33) 

u(z, t) = 277sech[2?7(z - 4£i - z0)\ exp[i2£z + U(T]
2
 - £2)t - <f>0].        (1.34) 

Time and space are swapped in this solution relative to Eq. (1.25), and time 

evolves twice as quickly in the normalized frame. This solution also has four 

parameters, 77, £, z0 and <f>0, related to the soliton amplitude, frequency, initial 

position, and initial phase. The parameters rj and £ correspond to A/2 and 

0/2, respectively. The quantity ( = £ + ir) = ft/2 + iA/2 is the eigenvalue 

associated the Inverse Scattering Transform(IST) algorithm[4]. The 1ST is a 

nonlinear transformation of either the time or spectral domain to a scatter- 

ing domain, in which exact analytical solutions are obtained for a group of 

physically important nonlinear partial differential equations, one of which is 

the NLSE. Previous research[6, 7] has shown that data may be encoded onto 

invariant parameters associated with the soliton eigenvalue. The encoding of 

data on the imaginary part of the eigenvalue will be discussed briefly in Section 

1.3.4. Understanding the system behavior when data is encoded on the real 

part of the eigenvalue is the primary focus of this thesis. 
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1.2    Solitons for data communications 

A more intuitive understanding of soliton propagation is gained by 

considering how a fiber guides light. The index of refraction in the center (or 

the core) of the fiber is higher than that in the outer region (the cladding). 

Total internal reflection acts to guide the light down the fiber. The fundamental 

transverse mode of the fiber is dependent on the index gradient in the transverse 

dimension. In a similar manner, the sech2 intensity profile of the soliton creates 

an index gradient through the Kerr effect in Eq. (1.12) for which the pulse itself 

is the fundamental propagating mode. It is as though the soliton has created 

its own waveguide to propagate in. A temporal soliton is in effect a "temporal 

waveguide", as opposed to a typical waveguide that guides energy spatially. 

This analogy helps explain restrictions on communicating with soli- 

tons. For instance, when two waveguides are brought too close to one another, 

it is possible for coupling to occur. Similar effects occur when solitons of the 

same wavelength are too near one another in time; solitons attract or repel one 

another depending on their relative phases[8, 9, 10]. In Fig. 1.8, two solitons, 

each with 0 = 0, attract and form a bound pair because they are in phase; 

in Fig. 1.9, the solitons repel because they are out of phase. If either pulse 

were isolated, it would propagate at the same velocity as the reference frame. 

To prevent these interactions, the bit periods used in soliton communications 

must be somewhat larger than the pulse width r; bit periods of T = 5r are 

typically suggested[ll]. Since soliton data is usually amplitude-shift keyed, it 

must be encoded in a return-to-zero (RZ) format (see Fig. 1.10) to prevent in- 

tersymbol interference. As an example, communications with solitons having 

20 ps pulse widths might be limited to a maximum data rate of 10 Gb/s. The 
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•Vw-ccvÄ  ^- 

Figure 1.8.   Attraction and oscillation of two solitons with initially identical 
velocities and relative phase of zero. 

i - 

Figure 1.9.   Repulsion of two solitons with initially identical velocities and 
relative phase of 7r. 
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Figure 1.10: NRZ and RZ data encoding formats. 

separation between the pulses in Figs. 1.8 and 1.9 is only 2.8r. 

Other phenomena potentially limit soliton communications as well. 

The soliton self-frequency shift is a process by which the soliton frequency 

downshifts upon propagation due to the Raman effect[12]. The shift is strongly 

dependent on the Raman gain bandwidth and is only significant if r is less than 

a picosecond and the spectral bandwidth is large. Higher order dispersion was 

neglected in Eq. (1.7) and also becomes important if pulse widths are small. At 

very long distances it is possible for acoustic effects[13] or polarization mode 

dispersion[14] to limit data transmission. Acoustic effects result because each 

soliton creates a shock wave through electrostriction which resonates in the 

transverse dimension of the fiber, affecting trailing solitons.   Birefringence is 

small enough in standard fiber to be ignored in the derivation of the NLSE[15] 

so polarization effects are usually minimal. In fact, solitons may be multiplexed 

on orthogonal polarizations in weakly birefringent fibers[16]. This allows pulses 

to be spaced possibly as close as 2.5r, doubling the data rate. 

For pulse widths larger than 1 ps, the most important restrictions on 



22 

soliton communication are related to the process of loss and amplification. Gen- 

erally, soliton propagation is quite robust in the presence of amplifiers[17, 18]. 

In fact, the amplitude may vary somewhat from its fundamental intensity using 

lumped amplifiers while maintaining a soliton-like behavior[19, 20, 21]. How- 

ever, if the soliton period z0 is on the same order of magnitude or smaller than 

the separation between amplifiers, the soliton energy behaves chaotically be- 

cause of a resonance between the soliton phase and the amplifier period[18]. 

Since amplifiers are typically separated by 50 km or lessfll], this effect be- 

comes important when the pulse width is less than 10 ps (see Fig. 1.6). A 

more serious problem results when amplified spontaneous emission(ASE) noise 

causes fluctuations in the soliton energy[ll] and the soliton frequency. The 

resulting jitter in pulse arrival times is commonly referred to as the Gordon- 

Haus effect[22] and significantly limits the length of the system, even for pulse 

widths greater than 10 ps. The effect is decreased by spacing the amplifiers 

closer together so that the gain of each amplifier is smaller. 

Most of these effects are also reduced by propagating in less dispersive 

fibers. Thus, soliton communications usually takes place in dispersion shifted 

fibers around 1.55 fim. The dispersion coefficient D in such fibers is usually 

around 1 ps/nm-km at a wavelength of 1.55 /jm. While several other techniques 

have been suggested to reduce the effects of ASE noise[23, 24, 25], filtering has 

become the most popular[26, 27]. Bandpass filters are placed along the system 

at each amplifier, and the center frequency of each filter is chosen to match 

the frequency of the soliton. The filters act to limit any shifts in the soliton 

frequency and reduce the jitter in the soliton arrival time at the end of the 

fiber.   They also provide better control over soliton power.   The most recent 
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breakthrough in the application of filter technology is the sliding-frequency 

guiding filter[28, 29]. By translating the center frequency of each filter slowly 

(approximately 10 GHz translation over 1000 km), noise is suppressed that 

could potentially grow under a fixed frequency filter. Solitons are robust enough 

to adapt their frequency and velocity to the change in the filter frequency. 

Standard linear pulses are unable to adapt to the sliding effect, and cannot be 

used in such a system. Sliding filters have been used to transmit solitons at 

rates of 10 Gb/s in a single channel across 20000 km[30] and at a combined rate 

of 20 Gb/s across 13000 km in a two channel WDM soliton transmission[31]. 

They will probably be useful for more extensive WDM[32]. 

1.3     Other soliton applications 

Solitons were first observed physically in 1834. A canal boat stopped, 

and a Scottish experimentalist, J. Scott Russell, saw "a large solitary eleva- 

tion, a rounded, smooth and well defined heap of water, which continued its 

course along the channel, apparently without change of form or diminution 

of speed" [33]. Russell followed the wave for one or two miles before losing 

sight of it. The mathematics of his observation were not understood, though, 

until the turn of the century, when the Korteweg-deVries(KdV) equation was 

derived [34]. It required another 78 years before the application of solitary 

waves were found to be supported by the NLSE in optical fiber[35]. This was 

preceded one year earlier by the first solution of the NLSE using the IST[36]. 

Solitons were eventually observed experimentally in fiber[37]. This 

required the development of fibers with low enough loss in the anomalous 

dispersion regime and a pulsed optical source with enough energy at the ap- 

propriate wavelengths. The application of solitons to communications has now 
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progressed to the point that they have been propagated across distances as 

long as a million kilometers[1] and at data rates as high as 80 Gb/s[38]. It is 

possible that the next transoceanic fiber cable will use solitons[39]. However, 

solitons are being applied in other interesting ways to communications and 

computing. 

1.3.1 Optical switching in fiber Solitons are ideal candidates 

for use in all-optical switching technologies because their spectrum and phase 

is conserved after collisions with other solitons. Most switching applications 

with solitons use polarization maintaining birefringent fiber. Two solitons are 

encoded on the orthogonal polarizations of the fiber and interact because of 

cross-phase modulation (CPM), which is mathematically described by a cou- 

pled NLSE. CPM occurs because the intensity of a soliton on one polarization 

(or wavelength) affects the index of refraction seen by a soliton on the orthog- 

onal polarization (or a different wavelength). The interactions cause frequency 

or timing shifts that may be used for switching. Two examples are soliton 

dragging and soliton trapping[40]. 

Soliton trapping takes place when the pulse walk-off due to polariza- 

tion dispersion is balanced by an attractive force due to CPM. The intensity of 

each soliton effectively creates a potential well that the other soliton prefers to 

propagate in. The soliton on the slow axis speeds up and the soliton on the fast 

axis slows down and the solitons propagate as a single entity. The correspond- 

ing wavelengths move towards one another by equal amounts if the intensities 

of the solitons are identical. A filter centered at the frequency between the 

two solitons at the output of the fiber passes a signal only if both solitons are 

present, implementing an AND gate. Such gates demonstrate neither gain nor 
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are they cascadable, but can achieve contrast ratios as large as 22:1 with 46 pJ 

switching energy at a switching rate of 0.35 THz[41]. 

The velocity shift during the interaction between orthogonally polar- 

ized solitons also causes a displacement in time. Soliton dragging operates on 

this principle, but is more general than trapping since the solitons intensities 

can be different. To implement a NOR gate, signals A and B on identical 

polarizations are injected into the fiber at different times and interact with a 

control pulse C on the orthogonal polarization. If either A or B are present, the 

control pulse C will be shifted out of its timing window if the data is encoded 

in a time-shift-keyed format. The gate could theoretically implement a NAND 

gate because the control pulse will shift twice only if both pulses were present, 

although the pulse synchronization would need to be controlled very precisely. 

Soliton dragging gates have been used as inverters with switching energies as 

low as 1 pj[42]. Dragging gates fulfill all the requirements of a digital optical 

logic gate. They have gain because a small pulse controls the timing of a larger 

pulse. They are cascadable and logically complete. The time-shift keyed out- 

put of a dragging gate can be converted into an amplitude-shift keyed format 

by cascading a trapping gate after the dragging gate[40]. 

One drawback of such gates is their latency. The fiber lengths required 

for the pulses to interact are relatively long, so the gates would primarily be 

used in pipelined, feed-forward communications architectures. Such an applica- 

tion was proposed recently in a soliton ring network[43]. The proposed network 

was a wide area network operating at peak bit rates of 100 Gb/s with several 

hundred users. Several other switching applications using solitons in fiber are 



26 

possible. Switches have been proposed using Sagnac interferometers[44], heli- 

cally evolving solitons in periodically twisted birefringent fiber[45, 46], twin- 

core fiber rocking filters[47], and directional couplers[48, 49]. 

1.3.2 Optical logic gates using spatial solitons By replac- 

ing t in Eqs. (1.24) and (1.25) with the spatial variable x, it is possible to 

describe the propagation of a solitary wave that is spatially bound, instead of 

temporally bound. Such a laterally confined beam is a spatial soliton. The 

beam is "self-trapped" because of the balance between linear diffraction and 

self-focusing. Diffraction is the spatial analog of temporal dispersion and self- 

focusing is the analog of self-phase modulation. The intensities required to 

balance these effects are often quite large, and research is being conducted to 

find materials with large nonlinear coefficients so that the intensities can be 

reduced. Two such beams propagating at different angles with respect to one 

another, while experiencing a displacement in space at their collision, maintain 

their direction of propagation apart from the collision. It was predicted[50] 

that such an interaction may be used for switching. Further experimental 

results[51] demonstrate that parallel channels separated by two beam widths 

can also interact depending on their relative phase, similar to the behavior in 

a fiber depicted in Figs. 1.8 and 1.9. The beams attract when in phase, form- 

ing a bound pair that oscillate about one another periodically, and repel when 

■K out of phase. Spatial soliton interactions are especially important because 

they typically occur over short distances, with low latency. An example of 

a tri-state device based on repulsive effects between spatial solitons has been 

proposed that requires interaction lengths less than a millimeter[52]. 
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Another interesting application is related to the fact that an interfer- 

ence pattern forms at the center of a collision between two spatial solitons[53]. 

The interference pattern generates an index grating that splits the energy of 

a weak probe beam that propagates within one of the two solitons. The effi- 

ciency of the diffractive effect is dependent on the angle between the two spatial 

solitons and their relative phase. With a properly chosen angle and phase rela- 

tionship, the diffraction is highly efficient, with most of the probe beam energy 

being switched to the opposite spatial soliton channel. It is also possible to 

control the diffraction by changing the wavelength of the probe beam. 

Phase dependent switching, though, has negative implications in com- 

puting or communications since phase can be difficult to maintain. It might 

be possible to avoid phase problems by encoding the interacting solitons on 

orthogonal polarizations. One proposed technique is analogous to temporal 

soliton dragging. Asymmetric spatial soliton dragging[54] takes place when 

two orthogonally polarized spatial solitons with unequal intensities overlap at 

the interface to a nonlinear medium. Although the pulses are travelling in dif- 

ferent directions initially, the weaker of the two pulses is able to drag the larger 

by over a beam width so that it no longer passes through a spatial aperture. 

In analogy to temporal dragging in fiber, the interaction takes place because of 

cross-phase modulation between orthogonal polarizations. Such a device has 

gain, is fully cascadable, and can be implemented as a logically complete NOR 

gate. An extension of the spatial soliton is the possibility that packets of energy 

can be bound in all dimensions of space and time[55]. These so called "light 

bullets" could interact in similar ways to those suggested above but might 

require less energy due to their spatial confinement.  While such entities are 
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now possible only in theory, spatial solitons are fascinating and require more 

research to fully assess their usefulness in computing and communications. 

1.3.3 Dark solitons The soliton in Eq. (1.25) is often called a 

bright soliton and propagates because of a balance between anomalous GVD 

and SPM. In the anomalous regime, the chirp resulting from GVD was negative 

and the instantaneous frequency across the pulse in Fig. 1.4 decreased. The 

chirp resulting from SPM using Eq. (1.17) was positive because of the sign of n2 

and the derivative of the intensity profile. The two effects balanced and a bright 

soliton formed. In the normal dispersion regime, the chirp of the pulse due to 

GVD is opposite that shown in Fig. 1.4, and the instantaneous frequency across 

the pulse increases due to both GVD and SPM. No soliton forms because the 

effects of GVD and SPM cannot balance. However, a different kind of soliton 

can still propagate in the normal dispersion regime. Such a pulse is called a 

dark soliton. A dark soliton is simply a dark pulse on a bright continuous wave 

(CW) background. The pulse propagates without dispersing. 

A dark soliton is formed because a positive chirp due to GVD can still 

be balanced by a negative chirp due to SPM. Both effects must be opposite 

that in Fig. 1.4. Since n2 is positive in both dispersion regimes, the nonlinearity 

only creates a negative chirp in Eq. (1.17) if the intensity in the leading edge 

of the pulse decreases while increasing in the trailing edge. A dark "hole" in 

a bright background is the only way this is possible. The amplitude of a dark 

soliton is described by a hyperbolic tangent and is the solution of the NLSE 

equation when the sign of ß2 is positive. 

Theoretically, a dark soliton requires an infinite amount of energy be- 

cause a CW (continuous wave) beam is necessary for its formation. Practically, 
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dark solitons can still propagate stably even if the background is not fully CW. 

In a recent experiment [56], a dark soliton 5 ps in width was propagated over a 

kilometer of fiber at a wavelength of 850 nm and required peak powers around 

500 mW. Trains of dark solitons in fiber have also been propagated[57] but re- 

quired peak powers of around 1000 W. Dark spatial solitons have been proposed 

for implementing devices such as logic gates[58]. Finally, dark solitons have 

been used to compress bright optical pulses in the normal dispersion regime[59] 

and can also propagate with a bright soliton in the normal dispersion regime 

as a pair if the pulses couple through CPM[60, 61]. 

1.3.4 Higher order soliton propagation If a pulse entered 

the fiber with width and velocity identical to the soliton in Eq. (1.26), but 

with a coefficient greater than one, the pulse would evolve as a higher order 

soliton.  For instance, Fig. 1.11 demonstrates the   evolution of a higher order 

-CV-r**.^    ^- 

Figure 1.11. Evolution of a higher order soliton with initial condition 2sech(i). 
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soliton having an initial condition u(0,t) = 2sech(t). The pulse evolution is 

solved using the 1ST and it repeats after one soliton period z0 = (ir/2)zc, or 

1.57 spatial units in the normalized frame. While it is possible in theory[7] to 

encode multivalued data using such pulses, their evolution is unstable. Slight 

perturbations in the velocity or frequency cause higher order solitons to break 

up into distinct pulses and dispersive radiation. It is still unknown whether 

such pulses could be used to transmit data in fiber communication systems. 

1.4    Wavelength multiplexed solitons in fiber 

The emphasis of prior WDM soliton research has been on the inter- 

actions between only two channels. The frequency and velocity shifts that 

result during a two-soliton collision have been studied analytically[62] and 

experimentally[63, 64] and will be discussed in great detail in Chapters 3 and 4. 

Interactions at the fiber input[65, 66] and also in the presence of loss and 

amplification[62, 67, 68, 69] have been studied as well, and fllters[32, 31, 70] 

have been proposed as a means of reducing interactions. WDM solitons have 

also been used to make quantum measurements of the photon number[71, 72]; 

such measurements may be useful in detecting squeezed states in quantum 

theory [73, 74]. Only recently have researchers begun to study the effects of 

collisions between arbitrary numbers of WDM soliton channels. The problem 

of detecting soliton data on N channels in spite of frequency distortion was 

studied several years ago[6, 75], while the first experiment with greater than 

two wavelengths was demonstrated this past year[76]. This thesis will fur- 

ther clarify those issues which affect the application of WDM solitons within 

practical communication systems. 



CHAPTER 2 

SOLITON SOURCES 

The development of soliton sources has been a subject of interest for 

quite some time[77], since practical soliton sources (and receivers) are necessary 

before solitons may be used in actual telecommunication systems[78]. In many 

respects, soliton generation is not difficult, since the soliton pulse is the only 

stable solution to the NLSE. Even a square wave with sufficient energy at 

the proper wavelength eventually (after several soliton periods) evolves as a 

soliton by shedding some of its energy as dispersive radiation. In this chapter 

we discuss different techniques for generating solitons in optical fiber. The 

three types of sources we consider are color center lasers(CCL), semiconductor 

sources, and fiber lasers. We also discuss experimental results using both a 

CCL and a fiber ring laser. 

2.1    Color center lasers 

Color center lasers(CCL) are one of the most common sources of high- 

energy narrow pulses in the infrared region of the electromagnetic spectrum. 

They receive their name because the active medium of the laser is the color 

center, a point defect in a crystal lattice[79]. When the color center is illumi- 

nated by an optical pump, it absorbs a photon and moves to a higher energy 

state. However, this state is short-lived, and the center quickly drops to an 

excited state at a lower energy level, while emitting a phonon into the crystal 

lattice. When the electron drops back to the ground state, energy is radiated as 
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a photon with lower energy than the pump. If the crystal is placed in an optical 

cavity and is pumped with enough energy to create a population inversion, the 

energy transitions are stimulated by the pump, and the color center lases. The 

emission process occurs over a relatively large band of energies, so the tuning 

range of the CCL output wavelength is rather large. Although many different 

color centers exist, the one used in our laboratory is an (F^H point defect in 

a NaChOH crystal. 

The path of the beam in a Burleigh FCL-230 color center laser is 

shown in the diagram in Fig. 2.1. The horizontally polarized pump enters 

from the left of the diagram, passes through two alignment apertures, and is 

then reflected into the cylindrical crystal chamber. Since the crystal is hy- 

groscopic, the crystal chamber must remain in a vacuum, and it must also be 

kept at liquid nitrogen temperatures or the color centers disassociate from the 

crystal when illuminated by the pump or the room light. After the pump is 

focused onto the crystal by the concave mirrors, the beam passes through the 

partially transmissive beam splitter into the rectangular cavity on the right. 

To insure that the CCL mode-locks at precisely the modulation frequency of 

the pump, the beam path in the chamber on the right is folded so that the 

Pump input CCL output 

Figure 2.1: Beam path in the Burleigh FCL-230. 
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CCL cavity length matches that of the pump laser. The wavelength is tuned 

with the birefringent plate at the bottom of the diagram in the rectangular 

chamber. The birefringence of the plate changes with orientation and wave- 

length, so that the desired wavelength passes through the plate with no change 

in polarization. Undesired wavelengths are rotated towards vertical and are 

blocked by Brewster windows in the cavity. Thus, the CCL output is horizon- 

tally polarized at the wavelength for which the plate birefringence is zero. The 

cavity end mirror is located just after the birefringent tuner. 

The pump for an NaChOH CCL requires two horizontally polarized 

colinear beams. The first beam at 1.06 /zm is generated by an Nd3+:YAG 

laser, mode-locked at 82 MHz, with pulse widths around 60-70 ps and average 

power of 4 W. The second beam consists of 3 mW of green light, generated 

by frequency doubling the YAG output. This beam insures that the color 

centers are correctly oriented with respect to the polarization of the pump. If 

the green light is absent, the crystal is bleached, since color centers with the 

correct orientation settle into the orthogonal (and incorrect) orientation with 

some finite probability during each absorption and emission cycle. 

The NaCkOH CCL may be tuned over a wavelength range from 

1.49 //m to 1.7 /xm, with pulse widths of 9-12 ps and average power as large 

as 400 mW. Since the mode-locking frequency is 82 MHz, the peak power of 

each pulse may be as high as 400 W. Given the results in Fig. 1.6, only about 

10 mW peak power is required to generate 10 ps solitons in a dispersion shifted 

fiber with D = 1 ps/nm-km. Since the energy out of the CCL is many times 

larger than that required for soliton generation, the CCL is a flexible research 

tool.  For an actual communication system, though, the CCL is rather large, 
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expensive, and impractical, requiring significant attention and maintenance if 

it is to be used on a regular basis. 

2.1.1 Pulse compression and WDM with the CCL The 

plot in Fig. 1.11 depicts the evolution of a soliton with peak power four times 

that necessary for soliton propagation. Initially, the pulse compresses, reaching 

a minimum width after propagation of half a soliton period. Since the peak 

power of the CCL is many times greater than that required for a 10 ps soli- 

ton, we expect to see significant compression. Using approximately 2 km of 

dispersion shifted fiber with a dispersion zero wavelength near 1.56 ^m, pulses 

as small as 360 fs were observed — a compression factor of at least 25 x — as 

measured by an autocorrelator. The soliton period of a 10 ps pulse is tens of 

kilometers (see Fig. 1.6), so even greater compression is theoretically possible, 

given the length of the fiber used in our experiments. 

The spectral width of a pulse out of the CCL is 25 GHz, so the spec- 

tral width of the compressed pulse is large enough to separate into wavelength 

multiplexed solitons with pulse widths on the order of picoseconds, using the 

configuration in Fig. 2.2. The output of the compression fiber is separated 

into individual spectral components by the grating demultiplexer. Specific 

wavelengths are chosen or blocked using the mask, and the initial timing re- 

lationship of the pulses is determined by varying the positions of the mirrors 

after the mask. Such an arrangement was used in recent experiments to study 

collisions between two densely wavelength multiplexed solitons[64, 80]. 

2.2    Semiconductor soliton sources 

Semiconductor laser diode sources are perhaps the most practical way 

of generating solitons, since they are compact and are capable of generating 
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Figure 2.2: Wavelength multiplexing with the CCL. 

pulses at gighertz rates with sufficient power (often in combination with an 

optical amplifier). Mode-locked external cavity lasers have been used in many 

soliton experiments to date[l, 38, 81]. However, the output of laser diodes are 

often asymmetric and chirped[3], resulting in dispersive radiation and increased 

noise as the pulses evolve into solitons[82]. External cavity lasers also require 

difficult alignment procedures and precise control of the cavity length[83, 84]. 
» 

Here we briefly discuss two recent examples of semiconductor-based soliton 

sources which overcome these disadvantages. 
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H 
Figure 2.3: Configuration of a hybrid soliton pulse source. 

2.2.1 Hybrid soliton pulse source The pulse source depicted 

in Fig. 2.3 is a robust device which generates nearly transform limited mode- 

locked pulses without spectral instability or sensitivity to cavity length[83]. 

The optical source is an RF modulated laser diode, high reflectivity coated 

on the left facet and anti-reflection coated on the other, so that the light may 

be coupled into the linearly chirped fiber Bragg reflector. To manufacture the 

Bragg relector, a photosensitive fiber is exposed to the interference pattern of 

two ultra-violet waves. The interference pattern modulates the index of refrac- 

tion, creating an index grating which reflects light when the Bragg matching 

condition is met. Since the grating is chirped — the modulation frequency 

of the refractive index increases with distance away from the diode — longer 

wavelengths reflect from the end of the grating closer to the laser diode, while 

shorter wavelengths reflect from the opposite end. The transmissivity at the 

center wavelength Ac of the Bragg reflector is shown in Fig. 2.4. 

The mode-locking frequency of a laser is dependent on the cavity 

length L according to the relation 

Jm — 
2n L 

(2.1) 

For the laser in Fig. 2.3, the cavity length varies with wavelength. Hence, as 
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Figure 2.4. Transmissivity versus wavelength of a Bragg reflector with center 
wavelength Ac. 

fm changes, the operating wavelength is self-tuned to the wavelength at which 

Bragg matching occurs, with longer wavelengths mode-locking at higher mod- 

ulation frequencies and shorter wavelengths mode-locking at lower modulation 

rates. Independent control of the wavelength may be possible with temperature 

tuning or by stretching the fiber[83]. 

In a specific example, if the center of the reflector is placed 41 mm 

from the laser diode, the mode-locking frequency at the center of the grating is 

2.5 GHz. If the spectral chirp in the reflector is about 0.2 nm over 1 cm of fiber, 

we expect modulation rates to vary between 2.2-2.8 GHz with a 0.2 nm vari- 

ation in wavelength. In actual experiments with these design constraints[83], 

good mode-locking is achieved across a frequency range of 700 MHz, from 
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2.1 GHz to 2.8 GHz, while the wavelength varies across 0.3 nm. With pulse 

widths around 50 ps, the peak powers of 5-10 mW are sufficient for soliton 

generation (see Fig. 1.6). The time-bandwidth product is less than 0.4 for 

many of the modulation frequencies, close to the ideal value for solitons given 

in Eq. (1.32), so the pulses are almost chirp free. Shorter pulse widths are pos- 

sible with more precise control of the chirp rate of the Bragg grating reflector. 

2.2.2 Dual-wavelength soliton source A second semiconduc- 

tor laser that has practical merit as a soliton source operates on the following 

principle[84]. If the phase of a CW laser with carrier frequency f0 is modulated, 

so that the instantaneous phase is given by 

$(i) = A sin(27r/mi) + $0, (2.2) 

the frequency of the CW wave will vary by an amount determined by the 

derivative of $(i). Hence, the deviation from the CW frequency f0 is 

JK J 2TT \2T) dt 

=   Afm COS(2TT fmt), (2.3) 

where $(<) and Sf(t) are plotted in Fig. 2.5. If the resulting waveform is 

passed through a low-pass filter (such as a step low-pass fiber grating filter[84]) 

with cutoff frequency just above f0 — Afm, as depicted by the lower of the two 

dashed lines in the second plot of Fig. 2.5, a train of pulses emerges with optical 

frequency f„ — Afm, as seen in the third plot of Fig. 2.5. Conversely, if a high- 

pass filter with cutoff just below f0 + Afm is placed after the phase modulator, 

the pulse train in the bottom plot results. The pulses emitted by such a laser 

have shapes between those of sech2 and Gaussian pulses[84]. 

The two pulse trains at f0 - Afm and f0 + Afm are referred to as 
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Figure 2.5. Phase modulation of a CW signal, the carrier frequency deviation, 
and the pulse trains that result after low- or high-pass filtering of the waveform. 

Stokes and anti-Stokes pulse trains, respectively, where the repetition rate of 

each train is fm and the bit period is T — l/fm. Since the derivative of 6f(t) is 

nearly zero at its maximum and minimum, the pulses are nearly chirp-free and 

transform-limited. Furthermore, the frequency of each train is independent of 

the bias $0 in Eq. (2.2), so the device is insensitive to drift in the modulator 

bias. 

The duty cycle T/T of the pulse train generated by the laser is in- 

versely proportional to the amplitude A of the phase modulation. Hence, the 

ratio of the energy in the pulse train to the input energy drops as A increases. 

In an experimental example[84], the phase of a 1 mW output CW semicon- 

ductor laser at 1.56 fim is sinusoidally modulated by a lithium niobate phase 

modulator at modulation rates between 2.5 and 15 GHz. With approximately 
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32 dBm of RF power, the amplitude of phase modulation is A = 1.5n. At 

10 GHz modulation, pulse widths of 21 ps are obtained and approximately 25- 

30% of the CW input energy is transmitted to the pulse train. The source is 

highly stable in long distance transmission of soliton pulses. If an appropriately 

wide (2Afm = 94 GHz) optical notch filter is used in such a system, the device 

becomes a source for two-channel WDM soliton transmission, although some 

practical technique is required to independently modulate each pulse train. 

2.3    Fiber lasers 

The third type of source we consider are fiber ring lasers. Like semi- 

conductor sources, fiber lasers are compact, but the pulses generated by fiber 

lasers are chirp-free and symmetric[85]. Pulses at Gb/s rates are achieved either 

through active or passive mode-locking; we only discuss actively-mode locked 

fiber lasers since picosecond pulses are easily generated in this manner[85, 86, 

87]. Sub-picosecond pulses are generated with passive mode-locking[88, 89]. 

An actively mode-locked fiber ring laser is illustrated in Fig. 2.6, 

where an EDFA (or a semiconductor optical amplifier[90]) provides gain. The 

modulator is usually an integrated electro-optic device, such as a LiNbOß 

Mach-Zehnder amplitude modulator, driven by an RF signal at gigahertz rates. 

Consequently, the laser is loss-modulated, such that the gain of the EDFA only 

compensates the cavity loss when the modulator is "on". The polarization con- 

troller guarantees that the polarization is maintained in the cavity, although 

a polarization maintaining fiber would be more robust. The isolator prevents 

back-reflections, insuring unidirectional operation of the laser. The tunable 

filter, while not required, stabilizes laser operation and allows for wavelength 

tunability. 
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Figure 2.6: Typical confiuration of an actively mode-locked fiber laser. 

Since the cavity length in a fiber ring laser is on the order of meters 

(the EDFA typically requires such lengths to provide sufficient gain), the laser 

must be harmonically mode-locked to generate Gb/s pulses. The RF signal 

frequency must be matched to the fiber cavity length L by the relation 

Jm  — 
mc 

(2.4) 

where m must be an integer. As an example, in a cavity 10 m in length with 

n = 1.5, m must be at least 50 to achieve a pulse rate of 1 Gb/s. Hence, there 

are 50 pulses traversing the fiber ring at any given time. 

The FWHM of a pulse generated by an actively mode-locked laser 

results from the interplay between the laser gain-bandwidth and the modulator 

transfer functional, 92]. The gain acts to narrow the pulse spectrally, while the 

modulator narrows the pulse temporally. The spectral gain is often assumed to 

be Gaussian with width A/, and the amplitude modulation is defined according 

to 

M(t) = exp[-Am(l - cosumt)}, (2.5) 
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where um = 2xfm and ATO is the modulation depth. M(t) is plotted for two 

values of Am in Fig. 2.7. The pulse preferentially experiences gain near the 

peak of the modulation, at which point M(t) may be approximated by the 

Gaussian function 

M(t) « exp (-Amu2
mt

2/2) ,       \t\ < T, (2.6) 

where T = l//m. 

Thus, the pulse is temporally narrowed and spectrally broadened by 

the Gaussian transmission function of the modulator, while it is temporally 

broadened and spectrally narrowed by the Gaussian gain-bandwidth of the 

Figure 2.7: Amplitude modulation for different modulation depths. 
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laser. The pulse width that results is given by[85] 

0.45 
(2.7) 

(/„A/VS^)1'2' 

If the cavity includes a tunable filter, A/ is equal to the bandwidth of the filter; 

if no tunable filter is used, A/ is determined by the dominant gain limiting 

effect of the cavity. Shorter pulses are obtained without the filter[85, 86], since 

the erbium gain bandwidth is rather large, but laser operation is less stable 

and precise control over the laser wavelength is difficult. 

In a recent demonstration using fiber lasers [85], transform-limited 

Gaussian pulses were obtained, at pulse widths which varied from 5 ps to 

100 ps by carefully controlling the bandwidth of the tunable filter or the mod- 

ulation depth, in agreement with Eq. (2.7). Since the pulse envelopes do not 

match the sech2 envelope of a soliton, some dispersive radiation results upon 

propagation, although it is small since the pulse shapes are similar. A main 

drawback of fiber lasers is their susceptibility to slight changes in the fiber 

length as the temperature of the fiber increases during operation. If the cavity 

length changes by even a slight amount, the mode-locking condition in Eq. (2.4) 

is violated. Such effects are dynamically avoided by piezoelectrically tuning the 

cavity length to the proper fiber mode [85, 93]. Fiber lasers are also sensitive 

to drift in modulator bias. The dual-wavelength soliton source in Section 2.2.2 

is less sensitive to such problems. 

2.4     Experimental results 

In this section we present the results of experiments demonstrating 

the operation of an EDFA and a mode-locked fiber laser. All measurements 

were made using a Tektronix DSA 602 digitizing signal analyzer with 1 GHz 
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bandwidth, a Hewlett-Packard 71450A optical spectrum analyzer, and optical 

power meters. 

2.4.1 Erbium-doped fiber amplifier Erbium amplifiers are 

becoming essential components in fiber communication systems. They are 

likely to be used in the next trans-Pacific fiber scheduled for 1996[2]. Although 

erbium is only one in a class of rare-earth ions that are used to implement fiber 

amplifiers, an EDFA is especially important because it amplifies at 1.55 //m, 

the low loss wavelength of standard optical fibers. Rayleigh scattering is the 

dominant loss mechanism below this wavelength, while infrared absorption 

dominates at longer wavelengths[94]. An EDFA amplifies a signal through the 

process of stimulated emission, so the principle of operation is no different than 

that of a typical laser. The most efficient pumping wavelengths are 0.98 /im 

and 1.48 /zm, at which a small-signal gain as high as 40 dB can be achieved 

with a pump power of tens of milliwatts. 

Figure 2.8 demonstrates the configuration of an EDFA. The pump is 

an Oki 1.48 urn Fabry-Perot laser diode with a maximum specified CW output 

power of 50 mW at a forward current of 500 mA; we typically operate with 

power less than 40 mW, requiring current less than 400 mA. The temperature of 

the pump laser is controlled by a thermoelectric cooler, and the current is driven 

by the circuit[95] illustrated in Fig. 2.9.   The current delivered by this circuit is 

EDF 

WDM Isolator 

Figure 2.8: EDFA configuration. 
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limited to 100 mA, so the circuit is modified to supply the current requirements 

of the pump laser. If the 10 kft resistor to ground from the negative pin of 

the OP-5 op-amp is replaced with a 5 kfi or smaller resistor, more current is 

pulled from the LM317 voltage regulator. The 25 Ü resistor between the two 

OP-27 op-amps must also be replaced with a 2 Ct resistor. Other modifications 

to the circuit in Fig. 2.9 are suggested in [95]. The remaining components 

used in the amplifier in Fig. 2.8 include an Amphenol 1485/1545 nm WDM, 

25 m of erbium-doped fiber(EDF) donated by AT&T, and an E-Tek isolator 

at 1550 nm. The 3.0 /xm diameter of the EDF core is smaller than that of 

standard fiber, so the EDF is fusion spliced to standard fiber to minimize 
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coupling losses.  The signal used to test the EDFA is generated by a 1.54 fxm 

distributed feedback(DFB) laser diode. 

The spontaneous emission spectrum of the EDFA without any signal 

present is shown in Fig. 2.10. The pump energy at 1.48 [im is seen toward 

the left of the plot, while the spontaneous emission spectrum of the EDFA is 

seen around 1.56 /im. The spontaneous emission spectrum shown here differs 

somewhat from that usually associated with erbium. Problems with the pump 

laser and with connector losses consistently disrupted measurements. Index 

matching fluid may be used to improve coupling between fibers. The more 

accurate two-hump erbium emission spectrum is observed if more pump power 
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Figure 2.10: Pump and spontaneous emission spectrum of an EDFA. 
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is coupled into the EDF. When a signal is present, we can achieve small-signal 

gain as high as 40 dB at a signal level of -40 dBm, while the gain saturates at 

higher signal levels. A plot of the gain and the output power versus the input 

signal level is shown in Fig. 2.11. The behavior of the EDFA without an 

isolator is somewhat erratic. Sharp peaks are observed at times in the emission 

spectrum; we attribute this to lasing that results from back-reflections at the 

fiber interfaces. The behavior also changes significantly if the isolator is moved 

to different positions in the system. Performance is optimized by positioning 

the isolator as shown in Fig. 2.8. 

2.4.2    Mode-locked fiber laser      By configuring the EDFA from 

the previous section in a ring, as in Fig. 2.6, mode-locked lasing is observed. 
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Rather than using a modulator, as depicted, a 2 x 2 LiNbOa switch with a 3 dB 

bandwidth of 175 MHz is used. Although the switch is designed for operation 

at 1.3 /im, by carefully adjusting the bias settings, extinction ratios of at least 

16 dB (and as high as 20 dB) are obtained for 1.55 ^m light at one output port 

of the switch; hence, the switch is sufficient to use as a modulator at 1.55 /xm. 

The second output port is conveniently used in place of the output coupler in 

Fig. 2.6. The switch is polarization sensitive, so a polarization controller was 

placed just before it. 

Mode-locked lasing is rather easy to achieve. Although the cavity 

length is not known precisely, by assuming a length of 30 m (the EDF is 25 m 

in length), the fundamental harmonic corresponding to one round-trip about 

the cavity is estimated to be 6.7 MHz using Eq. (2.4). With careful tuning 

of the modulation frequency, mode-locked pulses are seen at a frequency of 

6.1 MHz, so the cavity length is actually around 33 m. The mode-locked 

pulses at the fundamental harmonic, illustrated in the top plot of Fig. 2.12, 

have a pulse width of 10 ns. Although the laser wavelength is typically around 

1.56 ^m, a precise measurement of the wavelength is difficult to determine, 

as there is a significant amount of mode-hopping indicated by the spectrum 

analyzer. 

By increasing the mode-locking frequency to integer multiples of the 

fundamental, pulse trains at higher data rates and with shorter pulse widths 

are obtained, as shown in the lower two plots of Fig. 2.12. The pulse widths at 

frequencies 40 and 80 times the fundamental are 780 ps and 680 ps, respectively. 

The pulse widths are actually shorter than this; the measurement is limited by 

the 1 GHz bandwidth of the signal analyzer, so pulse widths much less than 
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Figure 2.12. Mode-locked fiber laser pulse trains with mode-locking frequencies 
equal to the fundamental, 40 x the fundamental, and 80 x the fundamental. 
Corresponding pulse widths are 10 ns, 780 ps, and 680 ps, respectively. 

1 ns are difficult to measure with accuracy. Strict adherence to Eq. (2.7) is also 

difficult to verify, since neither the gain bandwidth nor the modulation depth is 

known. Performance is improved, though, by using a Hewlett-Packard 8082A 

pulse generator instead of sinusoidal modulation to vary the switch state, since 

the modulation depth is larger with the pulse generator. Since the modulation 

depth decreases and the cavity loss increases beyond the cutoff frequency of 

the switch, the laser operation becomes very unstable beyond a mode-locking 

frequency of 125 MHz. The instability is easy to observe given the noise on 

the pulse train at 495 MHz in Fig. 2.12. The mode-hopping on the spectrum 

analyzer is also much worse at the higher frequencies. 
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Several things would stabilize the laser. First, connector losses would 

be reduced and back-reflections minimized by fusion splicing all fiber joints. 

The laser operation is also sensitive to vibrations;  taping the fibers to the 

table helped to some extent. Furthermore, one should use an EDF specifically 

designed for laser applications. Such fibers are shorter and have higher erbium 

concentrations, providing higher gain than standard amplifier fiber over shorter 

(on the order of one meter) distances.   While we attempted to use this type 

of fiber, mode-locking was found to be difficult, probably because of improper 

fiber length and insufficient gain. The length must be chosen more accurately 

in such a fiber (due to its shorter length) to achieve the proper amount of gain. 

Generally speaking, the fundamental harmonic in such a fiber would be larger, 

so mode-locking at higher frequencies would be easier. Ultimately, a high-speed 

modulator and a tunable filter are required to stabilize the laser output and 

shorten the pulses.   The inclusion of these devices is necessary before actual 

solitons can be observed. The tunable filter also provides an easy mechanism 

for observing interactions between WDM solitons under different conditions. 

We discuss the theory of such interactions in the following chapters. 



CHAPTER 3 

WDM SOLITON INTERACTIONS IN AN IDEAL FIBER 

To understand interactions between WDM solitons in fiber commu- 

nication systems, it is useful to first analyze collisions between solitons in an 

ideal fiber. Initially, we discuss interactions between two WDM solitons, and 

then proceed to the more arbitrary case with N WDM soliton channels. While 

several factors are ignored by assuming the fiber is ideal, loss is probably the 

most important, since energy dissipation and amplification can significantly 

affect interactions between solitons. Such effects will be discussed in the next 

chapter.  In addition, we assume that all wavelength channels have the same 

linear polarization; it is unlikely that this would be true in actual systems. 

We also ignore birefringence[15], although it can be important if fibers have 

very low dispersion[ll] or if propagation distances are long[14]. Finally, since 

the pulse widths of interest are longer than 10 ps, higher order dispersion is 

ignored, as are other fiber nonlinearities. We will see in Chapter 4 (and briefly 

in Section 3.3.2) that fiber nonlinearities can be important when using WDM 

extensively for fiber communications. 

3.1     General discussion 

Distortion at a collision between two solitons is illustrated by Fig. 3.1, 

where each curve is a plot of the exact solution of the NLSE. (The exact 

solution of the NLSE will be discussed in greater detail in Section 3.3.) The 

amplitude of each pulse is plotted as a function of fiber position z and time t. 
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z=-2 

Figure 3.2.   Timing of each pulse in Fig. 3.1 at successive values of z.   The 
dashed curves depzct the timing of each soliton if no collision had taken place 

plotted as a function of fiber position z and frequency u.   The spectrum is 

derived by discretizing the waveform in Fig. 3.1 and computing its fast-Fourier 

transform^] at each position z. (Here, the 25 unit wide temporal waveform is 

discretized into 256 data points. Hence, after periodic continuation, the ampli- 

tude of each spectral component in Fig. 3.3 is scaled by a factor 256/25 = 10.24 

times larger than the usual soliton spectral amplitude of TT in Eq. (1.30).) In the 

anomalous dispersion regime, higher frequencies travel with greater velocity, 

and since the spectral intensity of a soliton is represented by a sech2 envelope 

as in Eq. (1.30), the positive spectral component in Fig. 3.3 corresponds to the 

faster soliton in Figs. 3.1 and 3.2.  The spectrum at * = 0, the center of the 

collision, corresponds to the solid curve in Fig. 3.4.     The dashed curve depicts 

the frequency component of each soliton when no collision is taking place. At 



54 

40 

30 Slower soliton        Faster soliton 

Figure 3.3: Fourier representation of the two soliton collision. 

Figure 3.4.    Frequency distortion at 
a two soliton collision.    Dashed 

represents each spectral component when no collision istahing plate curve 
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the center of the collision, the frequency of the faster soliton has increased, and 

the frequency of the slower soliton has decreased. Since higher frequency pulses 

travel with greater velocity, the velocity of the faster soliton has increased mo- 

mentarily, while the velocity of the slower soliton has decreased.   Thus, the 

faster soliton moves forward slightly in time because of the collision, whereas 

the slower soliton is delayed, consistent with the behavior in Fig. 3.2. Note in 

Fig. 3.3 that each soliton returns to its original frequency after the collision, 

so the velocity changes only during the collision. The displacements in time in 

Fig. 3.2 are small because the interaction in the frequency domain in Fig. 3.3 

is small. In fact, the soliton frequencies are relatively undistorted in compari- 

son to the distortion in time at the collision. Thus, separating each soliton by 

wavelength with a grating demultiplexer will insure accurate detection of data 

if the timing displacement in Fig. 3.2 is not too large. 

Since solitons require more energy than standard pulses, the solitons 

on different wavelengths interact because the potential wells under each pulse 

merge during a collision, creating a deeper well. Energetically, each soliton 

prefers to remain in the potential well, so the solitons attract — the faster 

soliton speeding up and the slower soliton slowing down. The collision is time- 

reversible, so the interaction is symmetric, and the velocity of each soliton 

returns to its original value after the collision is completed. In analogy to the 

interaction between solitons on orthogonal polarizations in Section 1.3.1, the 

interaction results from cross-phase modulation(CPM), as each soliton sees a 

gradient in the index of refraction created by the intensity of the other soliton 

through the Kerr effect in Eq. (1.12). 

Intuitively, the behavior of two solitons during a collision is explained 
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by the simple example of two sprinters in a race. As a faster runner approaches 

a slower runner, no interaction takes place between them (unless, of course, 

one runner violates the rules), and the faster sprinter simply passes the slower. 

However, if the surface of the track were flexible, like a trampoline, faster 

runners would have an advantage over slower runners. As a faster runner 

approached a slower runner, the depression in the surface of the track under 

each runner would merge. The velocity of the faster sprinter would increase 

and the velocity of the slower sprinter would decrease because the combined 

weight of both runners would form a deeper well in the surface of the track. 

After the faster sprinter passed the slower sprinter, though, the velocity of the 

faster runner would decrease and the velocity of the slower would increase, and 

both runners would eventually return to their original speeds. However, the 

faster runner would have advanced in position relative to the slower runner. 

This is analogous to the behavior of the solitons in Figs. 3.1 and 3.3. GVD 

is similar to the different velocity of each sprinter, and the fiber nonlinearity 

■corresponds to the flexibile surface of the track. 

3.2    Quantitative analysis of two-soliton interactions 

The interaction between two solitons is described quantitatively by 

analyzing the coupled NLSE resulting from CPM. Suppose that the frequency 

of the faster soli ton is ttu = Ü, and that the frequency of the slower soli ton is 

flv = 0. If 0 is arbitrary and much greater than one (a value for Q of at least 

five, as in Figs. 3.1 and 3.3, is usually sufficient), the evolution of the faster 

soliton is described by 

u(z, t) = sech(t + Üz) exp[-ift< + i{\ - ü2)z/2}, (3.1) 
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as in Eq. (1.26), and the slower soliton corresponds to 

v(z,t) = sech(i)exp(z'z/2). (3.2) 

Actual frequency and wavelength spacings between two soliton channels with 

a normalized frequency separation of 0 are shown in Fig. 3.5 for r = 20 ps 

and r = 50 ps. Using Eq. (1.32) and recalling that Ü = 2TTA/T/1.763 from 

Eq. (1.31), a typical channel spacing of five soliton spectral widths, or 

1.575 
A/ = 56i/ =. (3.3) 

corresponds to O = 5.61, as depicted by the dashed line. We will always assume 

that the pulse width r is the same in both channels.   The pulse evolution 

150 

100 

N 

Ü 

Figure 3.5. Frequency and wavelength separation versus Ü for r = 20 ps and 
r = 50 ps. 
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described by u and v is less accurate if the frequency spacing is small, since 

larger timing and frequency shifts occur for smaller values of tt. 

In an analysis parallel that given in [62], we replace u in the NLSE 

in Eq. (1.24) with u + v, since both u and v are solutions to the NLSE. The 

resulting coupled equations in u and v are 

.du ld2u      ..  ,9       ,  ,^ 
-%Tz    =    2^ + (H  +2H> (3-4) 

Equations (3.4) and (3.5) describe the propagation of two pulses with unique 

frequencies under the effects of CPM. In deriving each equation, four-wave 

mixing terms were ignored — an invalid assumption if the frequencies are not 

well separated or when there are many wavelength channels[97]. 

The mean frequency of any pulse u may be derived using 

/    \      ImJ(^)udt      1T     r(du*\     J ,     s M=     f\u\>dt     =£ImJ{-dT)udt> (3-6) 

where Im denotes the imaginary part, u* is the complex conjugate of u, and £ is 

the pulse energy. Any variation in (uu) is predicted by taking the derivative of 

(UJU) with respect to z and substituting for du/dz and du*/dz using Eq. (3.4). 

The result, 

d{uu)      2  f d\u\2 .  l2 , 

is derived in the appendix in Section A.l. With u and v defined by Eqs. (3.1) 

and (3.2), the normalized soliton energy £ = 2 and the mean frequencies of 

the faster and slower soliton are Qu and Üv, respectively. Since d\u\2/dt = 

(l/tt)d\u\2ldz for u defined by Eq. (3.1), 

d£lu       1  d    r , „, 
~dz~ = TlTzl dtsech(t + ^)sech2(*), (3.8) 
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so that a small shift in 0U at a collision is given by 

SÜU = 7y[dt sech2(i + Oz)sech2(i). 

The solution to Eq. (3.9) is 

r0   _ 4 ttz cosh(Oz) — sinh(0.z) 

"~Ö~ sinh3(Oz) ' 

(3.9) 

(3.10) 

and the shift in the slower soliton at the collision is <50„ = -8QU, as shown 

in Eq. (A.7). The maximum value of 6tiu occurs at the center of the collision 

and is equal to 4/(30), as seen in the plot of 0£0U in Fig. 3.6. (Although 

a frequency spacing of 0 is used here, much of the soliton literature[62] uses 

20, so the maximum frequency shift is oftentimes represented by 2/(30).) 

Thus, at z = 0 the mean frequency of the faster soliton is O + 4/(30) and 

1.51—'—r 1 ' ' ' 1 ' r- 

1.0 
a 
a 

& 

0.5 

o.nl    ,    i 
-6 

-. . L 
-2 0 2 

Position Qz 

Figure 3.6: Shift in the average frequency of the faster soliton at a collision. 
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the mean frequency of the slower soliton is -4/(3ft). (Recall from Eqs. (1.26) 

and (1.30) that a soliton with ft = 0 moves at the group velocity vg of the 

moving reference frame, so that a soliton with negative normalized frequency 

moves slower than the reference frame.) With 0 = 5 as in Figs. 3.3 and 3.4, 

the mean frequencies of the faster and slower solitons at z = 0 are 5.27 and 

-0.27, respectively. Figure 3.7 illustrates the variation in ftu and ft„ during the 

collision when ft = 5. Also plotted for comparison with dashed curves are the 

shifts if ft = 2.5; the maximum shifts are twice as large and the collision.occurs 

over a distance twice as long if the frequency separation is half as large. Note 

that while the solitons attract in time, they repel in frequency. 

o 
a 
3 
w 
<u 
u 

0  _ — 

-IP     ■       ■      ■ 
-1.0 

-]—I- 

-0.5 0.0 
Position z 

0.5 1.0 

Figure 3.7. The average frequencies ftu and Üv during a collision at z = 0 with 
ft = 5 on the solid curves and ft = 2.5 on the dashed curves. 
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By translating the normalized values of frequency into physical dimen- 

sions, the frequency spacing of 0+60 = 0+8/(30) at the center of the collision 

is related to a physical spacing of Af + Sf, where Sf = 4(1.763)/(37TOT), given 

0 = 2TTA/T/1.763 and SÜ = 8/(30). The maximum shift in the frequency of 

the faster soliton is 

cr       2(1.763) ,       x 

and the shift in the slower soliton is 6fv = -Sfu. Corresponding wavelength 

shifts are SXU = -(\2/c)8fu = —SXV. Also, since (-0) represents the inverse 

group velocity of the faster soliton u(z,t) in Eq. (3.1), the integral of (3.10) 

over z yields the magnitude of the timing displacement depicted in Fig. 3.2. 

The displacement, as given by Eq. (A.12), is 

6t f°° 4 
„ = -/     Snu(z)dz = -—, (3.12) 

J — OO Si 

and Stv = —8tu. The faster soliton u moves forward in time by 4/02 while the 

slower soliton v is delayed by an equal amount. When O > 1, \8tu\ approx- 

imates the exact value of ln(l + 40~2) predicted by 1ST theory in [36]. The 

physical magnitude of the displacement caused by a collision is 

ft^i-^i—— (3.13) 

where the plus and minus signs refer to the shifts in the slower and faster 

solitons, respectively. The maximum shift in the wavelength and the timing 

displacement of the slower soliton are plotted in Fig. 3.8 as a function of the 

initial wavelength spacing A for pulse widths of r = 20 ps and r = 50 ps. 

The dashed lines correspond to the wavelength spacing when the channels are 

spaced by five spectral widths.     The shifts are consistent with experimental 
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Figure 3.8. The maximum shift in the mean wavelength of the slower soliton 
at a collision and the timing displacement caused by the collision. Q = 5.61 
on the dashed lines. 

values at collisions between two WDM solitons[63]. The implications of these 

shifts in a communication system are discussed in detail in Chapter 5. 

3.2.1 Phase independent interactions Neither the frequency 

shift in Eq. (3.10) nor the timing shift in Eq. (3.12) depend on the relative phase 

between the two solitons. Such phase independence is valid for large fJ[40, 75], 

in contrast to the behavior for Q = 0 in Figs. 1.8 and 1.9 where the frequencies 

of each soliton are identical. Mathematically, the phase independence of WDM 

soliton interactions is easily explained using Eq. (3.7), since the frequency shift 

is dependent only on the modulus of u and v. Physically, this result is most 

easily understood by analyzing the effect of the waveform intensity on the index 
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of refraction during the collision. 

Suppose the waveform is approximated by a superposition of a pulse 

U with frequency $7/2 and a second pulse V with frequency — $1/2, as in 

q   =   U + V 

=   sech[* -t0 + ttz/2] exp[-itot/2 + (1 - $72/4)z/2 + <f>] 

+ sech[* - $7z/2] exp[tfii/2 + (1 - $72/4)z/2]. (3.14) 

The intensity is given by 

/ = \q\2 = \U\2 + \V\2 + 2\U\ \V\ cos(Clt + <f>). (3.15) 

With J7 = 0, the intensity is plotted in Fig. 3.9(a) for <f> = 0 and in Fig. 3.9(b) 

for <f> = IT, where t0 is chosen so that the solitons are separated by just a few 

pulse widths. The index of refraction is proportional to the intensity, so the 

index is higher between the pulses in Fig. 3.9(a) and lower between the pulses 

in Fig. 3.9(b). According to Fermat's principle of least time[98] (or Maupertuis' 

principle of least action[99, 100]), light attempts to propagate in the medium 

with the higher index of refraction, so the pulses in Fig. 3.9(a) attract (as in 

Fig. 1.8), and the pulses in Fig. 3.9(b) repel (as in Fig. 1.9). With WDM 

solitons, the value of Q is no longer zero, so the intensity beats according to 

Eq. (3.15) at a frequency of 17, as depicted in Fig. 3.9(c) and (d). The index 

of refraction between the solitons increases on average for all values of <j>, and 

the pulses attract regardless of the phase difference. 
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Figure 3.9.   Effect of the relative phase <f> between two solitons on waveform 
intensity. 

3.3    Quantitative analysis of iV-soliton interactions 

To predict the effects of interactions between an arbitrary number of 

wavelength channels, we analyze the exact iV-soliton solution of the NLSE[6, 8], 

N 

(3.16) 

where u(z,t) is now a generalized waveform describing the propagation of as 

many as iV solitons and the qj(z, t) are solutions of the linear matrix equations 

N 

^Ajkqk = 1. (3.17) 

A is an N x JV matrix with components 

A jh 
exp(-t'xj ~ Sj) + exp(-ixk + Sk) 

2 - t(% - ft*) 
(3.18) 
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and with parameters, 

Sj   =   t-toj + QjZ (3.19) 

x.   =   -^ + (1-^/2, (3.20) 

where each soliton has unit amplitude. An initial offset t0j is necessary here 

if we assume that the timing relationship between the solitons is arbitrary. A 

single soliton as in Eq. (1.25) is equivalent to the inverse of a single diagonal 

component of A, as given by 

— = sech(Sj) exp(»'xj). (3.21) 

In contrast, the N soliton solution in Eqs. (3.16) and (3.17) is a sum of all the 

components in the inverse matrix A-1, 

N N 

«(*, 0 = E ?;(*, *) = £ M~ V (3-22) 
i=i j,k=l 

where the notation J2j,k indicates a double summation over j and k. 

3.3.1 Asymptotic expansion of the exact A-soliton wave- 

form In general, A'1 is rather complicated and Eq. (3.22) is difficult to 

solve, even for N as small as two. One way to analyze an Ar-soliton waveform 

is to carry out an asymptotic expansion of A'1 [101]. First, we note that A may 

be defined as A = D + M, where the components in D and M are the diagonal 

and off-diagonal components of A, respectively. Assuming the frequency sepa- 

ration ftj — Qk between any two channels in the denominator of Ajk is large, 

we define a small parameter 

e=7r = maxf— —- ) , (3.23) 
0        j,k   \\Slj-£lk\J 
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where Ü is the frequency separation between adjacent channels. Expanding 

A'1, we have 

A~1 = (D + M)-1    =   [Dil + P)}-1 

= (i + py'D-1 

=   (I-P + P2-P3 + ...)D~\ (3.24) 

where P = D-1M. Since the components of the off-diagonal matrix M corre- 

spond to the components Ajk for j ^ k, the terms PnD~l in the asymptotic 

expansion are 0(en). So to leading order, Eq. (3.22) becomes 

u(z,t) = f;^-1)^ 
j,k=l 

=    £ [P_1)ü - {D-lMD-*)]k\ + 0(e2) 
j,k=l 

=   E{qf\z,t) + q?\z,t)}+0(e*). (3.25) 
3=1 

The terms <?j   (z,t) and q^   (z,t) describe the zeroth and first order effects of 

■qj(z,t) inEq. (3.22). 

Since (D~1)jj = 1/Ajj as in Eq. (3.21), the asymptotic approximation 

of the exact iV-soliton solution consists of a sum of N fundamental solitons 

minus a correction factor X^D-1 MD-1 )jk which describes interactions between 

the solitons to first order. As e = (1/0) —> 0, interactions are negligible and 

the waveform is a superposition of N distinct solitons, 

«(*,*)   «   £?J°W) + 0(e) 
N 

«   J2^^(Sj)exp(iXj) + 0{e). (3.26) 

No interactions are observed during collisions between these solitons since the 

frequency separation ft is very large.  This is consistent with Eqs. (3.10) and 
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(3.12), where the timing displacements and frequency shifts at a two-soliton 

collision go to zero as Q —> oo. In this regime, each spectral peak at ttj is 

described according to Eq. (1.30), so 

«(*,«)      «     £^0)(z,U,) + O(e) 

N 

«   7T 53 sech[7r(o; - fyJ/2] expftS^s)] + 0(e), (3.27) 
i=i 

where the $,-(2) are 

$j(z) = (1 - 2%w + ftJ)z/2 + (w - ft,-)*«,,-. (3.28) 

To estimate the first order effects on the soliton evolution, the second 

term of the summation in (3.25) must be included. These effects (as derived 

in the appendix in Section A.2) are described by 

E<??W) = - E (D-'MD-
1
)» 

i=i j,k=l 

N 

sech(Sj)exp(ixi) | E Y 
k=i      ] — K 

<k±i 

(3.29) 

where the frequency separation flj - Qk = {j — k)Q — (j — k)/e. Equation 3.29 

is the first order correction to qf\z,i). Including this term in Eq. (3.25), the 

TV-soliton waveform is described to leading order by 

A N 

4M) = E 
i=\ 

N 

= E 

sech(5;)exp(zXj)|l-2ief:^h(5;=) 

1 \ 
+ 0(62 

,(°) N 

q)°\*,t)\l-2iej: 
tanh(5fc) 

*=i    J ~ k 

*±3 )\ 

+ 0(62). (3.30) 

As e -> 0, u(z, t) approaches <?(0)(z, t) as given in Eq. (3.26). Note also that the 

0(e) term is imaginary, changing the phase of qf\z, t). The only effect this has 



Figure 3.10: Pulse behavior in space under leading order asymptotic effects. 

on the envelope of the iV-soliton waveform is a slight increase in the amplitude 

of each soliton, as demonstrated at various z in Fig. 3.10 for N = 2 with üi = 0 

and 02 = 5. The solid curves depict u(z, t) in Eq. (3.30) and the dashed curves 

depict q) \z,t). In comparison to Fig. 3.2, no timing displacements result 

since timing shifts are 0(e2). (Recall from Eq. (3.12) that the timing shift is 

proportional to 0~2 = e2.) Timing displacements would be observed if the 

next term q)   (z,t) were included in the expansion of (3.25). 

To describe the spectral evolution of an ./V-soliton waveform, the 

Fourier transform of u(z, t) is required. It is relatively straightforward to derive 

the Fourier transform of qf*\z,t) = sech(Sj) exp(z'xj); this was done in Eqs. 

(1.27)—(1.30) and the result is given by qf\z,u) = 7rsech(iraj/2)exp(i^j) in 
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Eq. (3.27), where we define ctj = u — ttj. The Fourier transform of 

<?}   (M) = ~2ie(lj   (z>0    L —= T" (3.31) 

is derived in Section A.2 and is given by 

&h 
iV 

q^(z,u) = 2eq^(z,u)\Z71 

sm(ajSjk) 
\ 

i (j - k) sinh(Sjfc) 
(3.32) 

,k*} 

where Sjk = Sj — Sk = (j — k)Q,z — (t0j — t0k). This is the first order correction 

,(°) to qj   (Z,LO), so the overall spectral waveform is 

N 

ü(z,u)    =    ^2qj(z,u) (3.33) 

/ 

r[ (j - k) s'mh(Sjk) 
V     Mi 

\-^v        , /        „^        /.^ x I        v-^     2esin(o;7iS',fc) 
=   ^7rsech(7raj/2)exP(^i) I 1 + J2 

\ 

M (j -k)smh(Sjk) 
+ 0(e2). 

The spectrum at a collision between two solitons, with fii = 0 and f^ = 55 

is shown in Fig. 3.11. The dashed curve is a plot of q~j '(z,ui), and the solid 

curve is a plot of <?] (z,u) + qj (z,to) at the midpoint of a collision. Note that 

the frequency space during the collision is nearly the same as that depicted by 

the solid curve in Fig. 3.4. 

Frequency shifts at interactions between N WDM solitons are de- 

scribed by analyzing a single spectral peak of v,(z,u) in Eq. (3.33). The value 

of atj when the derivative d\qj(z,u>)\/daj equals zero defines the shift in the 

spectral peak of the jtb. soliton at any position z in the fiber. Here we solve 

for the peak of the soliton spectrum, since it is uniquely defined from a math- 

ematical standpoint. This is in contrast to the shift in the mean frequency, as 
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Figure 3.11.    The frequency spectrum at a collision with (solid curve) and 
without (dashed curve) first order effects. 

solved for in Section 3.2 during a two soliton collision. If the shift in the peak 

is small, then it is described by the transcendental equation, 

7r
2\l + 2eaJEMi0-,)f/Il(5J,)/ 

However, if <Xj is 0(e), as was true for the shift in the mean frequency in 

Eq. (3.10), then the value of the second term in the denominator is 0(e2), and 

the shift in the peak frequency is approximated by 

6^ = a^^nt(r=r Sjk 
r[ {j - k)s'mh(Sjk)' 

(3.35) 
* 
M; 

This result is important because it demonstrates that the frequency shift in the 

jth. peak is simply a sum of the shifts caused by any of the other N — l solitons. 

It is well known that timing displacements at collisions between N solitons are 
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additive, since the solitons collide in a pairwise fashion[36].   Equation (3.35) 

confirms that spectral shifts are also additive to leading order. 

It is interesting to compare the shift in the frequency peak of a single 

soliton to the shift in its mean frequency at a collision with a second soliton. 

The shift in the mean frequency is different than the shift in the peak since the 

envelope of a single frequency component is not symmetric during the collision 

(see Figs. 3.4 and 3.11). Taking N = 2, with Si = t and S? = i + Oz, S21 = 0,z, 

so the shift in the peak frequency of the soliton originally a.t CI2 = 0, is 

8        Üz , 
SÜ2 =    20   • wo V 3'36 

xzil smh(liz) 

The peak frequency of the soliton initially at Cti = 0 shifts by Süi = — 6fi2- 

In contrast, the mean frequencies shift according to Eq. (3.10). Plots of each 

shift are depicted in Fig. 3.12,   where the solid curve corresponds to the shift 

in the peak frequency given by Eq. (3.36), and the dashed curve corresponds 

to the shift in the mean as described by Eq. (3.10).   The maximum shift in 

'the peak frequency is 8/(TV
2
ü), an amount that is 40% less than the maximum 

shift of 4/(3f2) in the mean frequency. However, the peak frequency begins to 

shift earlier during the collision. In fact, by taking the integral of the shift in 

the inverse group velocity — 8tt2, the timing displacement (equal to the area 

under each curve) is identically equal to —4/Q2 for both curves. With respect 

to Fig. 3.8, the shift in the peak wavelength is 40% less than the shift in the 

mean, while the timing shifts are as shown. 

3.3.2     Numerical verification of iV-soliton interactions      To 

verify the shift predicted by Eq. (3.35), we numerically compute the exact 

solution of the NLSE using Eq. (3.16) and its Fourier transform for N = 2 

and N = 3. The results are inductive, ensuring the accuracy of Eq. (3.35) for 
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Figure 3.12. Shift in the peak (solid curve) and the mean (dashed curve) 
frequency of the faster soliton at a collision with a slower soliton. 

arbitrary values of N. Discretized values of the exact temporal waveform are 

computed in C at each position along the fiber, and the spectrum is determined 

by taking a fast-Fourier transform of the discrete points in time. The spectral 

evolution in Fig. 3.3 was computed in this manner for each position z in Fig. 3.1. 

The algorithm is generalized for N = 2 or iV = 3, so that the exact solution 

for N = 2 is computed by setting the amplitude of the third soliton equal to 

zero. (The analytic form of the exact solution for iV = 3 is rather complicated, 

as listed in the program in Appendix B.) Since the spectrum is discretized, 

the actual value of the peak of each soliton frequency component is not well 

defined. To estimate the actual position of a peak, the five points around 

the peak are interpolated with a Lagrange polynomial[75], and the location of 
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the maximum is predicted by taking the derivative of the polynomial. (The 

Mathematica program used to calculate the location of each frequency peak is 

also included in Appendix B.) 

First, we take N = 2 and determine the accuracy of Eq. (3.36). As 

expected, the results are most accurate when 0 is large, since 0(e2) and higher 

effects were neglected during the expansion of Eq. (3.25). The dotted curves 

in Fig. 3.13 depict the shift in fi2 during a two soliton collision, as derived 

from a numerical computation of the exact two-soliton solution of the NLSE 

with initial frequencies fli = 0 and Ü2 — &• The solid curves depict the shift 

as given by Eq. (3.36).   For values of 0 greater than ten, the error between 
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Figure 3.13.   Numerically (dotted curves) and asymptotically (solid curves) 
estimated frequency shift at a two-soliton collision. 
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the asymptotic value and the exact value is less than 1.5%, so the difference 

between the curves is hardly noticeable. When 0 = 5, the shift estimated by 

Eq. (3.36) is 5% too large, so the shifts in each peak of Fig. 3.11 are 5% greater 

than the shifts in each peak of Fig. 3.4. The discrepancy between Eq. (3.36) 

and the numerical results becomes larger when Q is smaller, as seen in Fig. 3.14, 

where the maximum shift of 8/(7r20) from Eq. (3.36) is plotted on the solid 

curve and numerical estimates of the maximum shift are plotted on the dotted 

curve. By fitting a polynomial to the dotted curve, the maximum value of the 

numerical shift is predicted to second order, as in 

8        0.277 
01 &max — 

7T20 Q2 
(3.37) 

0.40  1 1 1 1 1 1 1 ]   "      !         1         1         1         |         1 
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Figure 3.14.   Numerically computed maximum shift (dotted curve) and the 
analytically estimated shift (solid curve). 
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Since the value of Q, must typically be greater than five to prevent large fre- 

quency and timing shifts, a first order estimate of the shift is usually sufficient, 

so Eq. (3.36) is adequate in most cases. 

To verify the accuracy of Eq. (3.35) for arbitrary N, we first compute 

the waveform at a simultaneous collision between three solitons, as depicted in 

Fig. 3.15. The value of t0j for each soliton is equal to zero, so the collision occurs 

at t = 0 and z = 0. The waveform is made up of three soliton components 

qi(z,t), q2(z,t), and q3{z,t) with initial frequencies ft^ = —10, £22 = 0, and 

O3 = 10, respectively, as illustrated by the spectrum in Fig. 3.16. 

As seen in the spectrum, distortion primarily affects frequencies Qi 

and fi3. A small amount of distortion is seen in the frequency component 

at 02, although it is most likely just a shift in amplitude, given the results 

in Fig. 3.17. Each curve in Fig. 3.17 represents the contour of one of the 

three frequency peaks, easily found by viewing Fig. 3.16 from above. Each 

dotted curve corresponds to the numerically computed results using the data 

from Fig. 3.16, and the solid curves correspond to Eq. (3.35). No difference 

is seen between the numerically computed location of each frequency peak 

and the asymptotic estimates. Given the results in Fig. 3.14, it is likely the 

discrepancy between the curves would be greater if Q was less than ten. There 

is no frequency shift in the peak of the component at tt2 because the combined 

effects of the first and third soliton on the second soliton cancel, as predicted 

by Eq. (3.35). The maximum shift in ti3 is given by the sum of its interactions 

with the first and second soliton, so its value at the center of the collision is 

ü3 = 10 + 8/(10X
2
) + 8/(20TT

2
) = 10.12. Consistent with the behavior at a two- 

soliton collision, the soliton frequency components repel as the pulses attract 
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Tim 

Figure 3.15: Simultaneous collision of three solitons. 

Figure 3.16: Frequency spectrum at simultaneous collision of three solitons. 
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Figure 3.17. Numerically (dotted curves) and asymptotically (solid curves) 
predicted contours of the spectral peaks during a simultaneous collision with 
JV = 3. 

in the time domain, so the frequency of the slower soliton decreases to a value 

of Oj = -10.12. 

The most interesting numerical results are observed when determining 

the accuracy of Eq. (3.35) if the collisions between the three solitons are not 

simultaneous, as depicted in Fig. 3.18. Although the frequency of each soliton 

is the same as before, as seen in Fig. 3.19, the timing is different, with iol = 5, 

t02 = —5, and to3 = 10. Each t0j represents the timing of each pulse at the 

position z = 0. Given these parameters, solitons one and two collide at z = — 1, 

solitons one and three collide at z = 0.25, and solitons two and three collide 

at z = 1.5. Distortion is seen in the corresponding frequency components in 

Fig. 3.19 at the position of each collision. The position of a collision is predicted 

by solving for z when the value of Sjk = -Skj = Sj - S* = 0. As an example, 
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Figure 3.18: Random collisions between solitons with N — 3. 

40 ,_ 

Figure 3.19.   Frequency spectrum during random collisions between solitons 
with N = 3. 
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predicted contours of three spectral peaks during random soliton collisions. 

the collision between soliton one and soliton two occurs at the position defined 

by the equation 

Su = Si- S2   =   (fii - Ü2)z - (t0i - to2) 

=   -10z-10 = 0. (3.38) 

The positions of the other two collisions are predicted in a similar manner. 

The frequency shifts at each collision are analyzed as before by using 

contour plots of each frequency peak, as illustrated in Fig. 3.20. If the 

collisions are not simultaneous, the estimated shifts using Eq. (3.35) agree for 

the most part with the numerics. For instance, the magnitude of the shifts 

between solitons one and two at z = — 1 and solitons two and three at z = 1.5 

equal 8/(7r210) = 0.08 since the frequency separation at each of these collisions 

is n = 10. The maximum shift during the collision between solitons one and 
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three at z = 0.25 is half as large because the frequency spacing is twice as 

large. 

Of greater interest, though, is the discrepancy between the asymp- 

totics and the numerics in soliton three at z — — 1 and soliton one at z = 1.5. 

While the first order asymptotic analysis predicts no distortion in either fre- 

quency peak at these positions, the numerical results indicate that the peak of 

the component at 0$ oscillates during the collision between solitons one and 

two, and that the peak at Ox oscillates during the collision between solitons 

two and three. The oscillations cannot be seen in Fig. 3.19 because the mag- 

nitude of the shift is small relative to the channel spacing, but the numerical 

computation of the frequency peak using the Lagrange polynomial is able to 

detect the effect (the details of the oscillation were observed by using a very 

fine discretization of positions z). 

The source of the oscillation appears to be a type of four-wave mix- 

ing(FWM) between colliding solitons[3]. Note that in Fig. 3.19, during the 

collision between solitons one and two at position z — — 1, there is a small 

frequency component located at a frequency of u> = —20. This is a FWM 

mixing component corresponding to the frequency difference 20i — 0,2 — —20. 

A second FWM component results during the collision and has a frequency of 

ui — 2fi2 — 0\ = 10, identical to the spectral component of soliton three. A 

more detailed analysis of Fig. 3.19 shows that the oscillation in the spectral 

peak of the third soliton at position z— —1 is a direct result of beating between 

the phases of the FWM component and the spectral component at 0$. 

It is useful to note that there is no oscillation in the peak at fl2 in 

Fig. 3.20 during the collision between solitons one and three at z = 0.25. This 
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is reasonable since there is no FWM component at u = Q2 during this collision. 

The FWM frequencies are u = 2ÜX - ü3 = -30 and u = 2Q3 - fti = 30 during 

a collision between solitons one and three; these FWM components are barely 

noticeable in Fig. 3.19 at z = 0.25. FWM terms are dropped in the derivation 

of the coupled NLSE for two solitons in Eqs. (3.4) and (3.5), although actual 

FWM components are easy to see at u> = 10 and u = — 5 in the spectrum of 

the two-soliton collision in Fig. 3.3. 

The full implications of FWM on fiber communications is beyond the 

scope of this thesis, but it should be mentioned here that oscillations as depicted 

by Fig. 3.20 do not actually degrade data in a soliton channel that corresponds 

to a FWM frequency. For example, consider the collision between solitons one 

and two and the corresponding oscillation in the soliton spectral component at 

Ü3. In reality, the oscillation only occurs in the spectral domain — the FWM 

energy at u = fi3 exists in the fiber specifically at the location of the collision 

between solitons one and two, and not at the location of soliton three. In other 

words, the frequency and velocity of a given pulse may not be affected by FWM 

interactions that occur somewhere else in the fiber. The oscillation only exists 

in the Fourier domain as a result of a Fourier integration across infinite time. 

However, this does not mean that FWM may be ignored; FWM at f23 still 

might act as a noise source at the receiver for the third channel, especially if 

the collision between solitons one and two happened to occur at an amplfier. 

Such FWM effects have been studied by several researchers[97, 102, 103], with 

implications that will be discussed briefly in the next chapter. 
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CHAPTER 4 

PERTURBATIONS AND WDM SOLITONS 

In this chapter, we discuss how perturbations influence the soliton 

interactions described in Chapter 3. Our emphasis is primarily on the effects 

of loss and amplification, since these non-Hamiltonian perturbations are pos- 

sibly the most important factors limiting the application of solitons to WDM 

communications. Exceptions to this may include interactions between WDM 

solitons during collisions at the fiber input or other nonlinearities such as stim- 

ulated Raman scattering, stimulated Brillouin scattering, or four-wave mixing, 

as will be discussed in the latter half of the chapter. 

4.1    Loss and amplification 

Intuitively, one might expect variations in pulse energy to significantly 

impair soliton propagation, since the soliton energy must be chosen properly 

to balance chromatic dispersion. However, as mentioned in Section 1.2, soliton 

propagation in a lossy fiber is still quite robust if amplifiers are not spaced too 

far apart. We denote this amplifier spacing as La in Fig. 4.1, where the average 

energy, as shown by the dashed line, must equal the fundamental soliton energy 

required for SPM to balance GVD[19]. The gain G of each EDFA in Fig. 4.1 is 

chosen to compensate the attenuation that occurs when propagating a distance 

La. If the attenuation coefficient a = 0.21 dB/km, then in dB G = 0.21Ia, 

where La must typically be less than 50 km. Limiting the amplifier spacing also 

helps decrease jitter and energy fluctuations due to ASE noise, and we shall 



83 

$> £> ß> 
EDFA 

Energy 

L 

Figure 4.1: Lumped amplifiers and the corresponding energy profile. 

see that it also reduces the magnitude of interactions between WDM solitons. 

4.1.1    Loss and amplification during WDM soliton collisions 

If two WDM solitons collide in a lossless fiber, the interaction is balanced — 

velocity shifts are symmetric about the center of the collision (see Fig. 3.6). 

This is reasonable since the nonlinear attraction between the solitons is just 

as strong during the last half of the collision as during the first half. When 

there is loss, though, the nonlinear attraction in the first half of the collision 

differs from the attraction in the last half of the collision. The imbalance in 

the attractive force may cause a permanent shift in the velocity of each soliton. 

To describe the interaction quantitatively, the NLSE in Eq. (1.24) 

may be rewritten to account for energy dissipation and amplification[62], as in 

.du      1 d2u 
+ g\u\2u, (4.1) 

dz     2 dt2 

where the energy gain/loss profile of the fiber is described by g = £(z)/£0. 

The average pulse energy in the fiber is £0, as was depicted by the dashed line 

in Fig. 4.1, and the variation in the energy over z is given by £(z). With a 

lumped amplifier, such as an EDFA, g is an exponentially decreasing function 

between the amplifiers, with a sharp increase at the location of each amplifier. 

Since g is the normalized pulse energy, it is dimensionless and its value must 

average to one to exactly cancel fiber loss. 
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In a derivation parallel that of Eqs.(3.4)—(3.8), the average frequency 

of a pulse u under the effects of loss during CPM with a second pulse v is 

d(u>u)      2g f d\u\ 

-f/^w*. <"> dz 

The integration is taken over {—oo, 00} unless explicitly stated otherwise. If u 

and v describe the evolution of the faster and slower solitons, respectively, as 

defined by Eqs. (3.1) and (3.2), Eq. (4.2) may be written as 

^ht = g (li. / it sech2(< + ft*)sech2(i)) , (4.3) 
dz ySi dz J ) 

where we recall from Chapter 3 that fi is the frequency difference between Clu 

and Q„ and that dQ,v/dz = —dCtu/dz. 

The quantity in the parentheses on the right side of (4.3) is dQu/dz 

in an ideal fiber, as given by Eq. (3.8). Consequently, 

da 

dz 

dCtu 

, dz loss 

(4.4) 
lossless 

where each side must be integrated to determine the frequency variation in 

a fiber with loss and amplification. The derivative on the right side of (4.4) 

is most easily found by differentiating Sftu in Eq. (3.10) (or by taking the 

derivative of the curve in Fig. 3.6). The result is depicted by the dashed 

curve in Fig. 4.2, for which the attenuation constant a = 0. The solid curve 

corresponds to dttu/dz on the left side of (4.4), as found by multiplying the 

dashed curve by g — £(z)/£0. Here £(z) is given by the dotted curve, so 

the collision at z = 0 takes place on an amplifier. Hence, the dashed curve 

is weighted more strongly during the latter half of the collision, when the 

energy in each pulse is greater. The position z in Fig. 4.2 is scaled by the 

collision length Lc. The collision length is the distance over which the collision 
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Figure 4.2. The variation in dQu/dz during a collision: without loss (a = 0); 
and at an amplifier (a ^ 0) for the energy profile shown in the dotted curve. 

occurs, starting when the half-power points of the solitons overlap. With a 

frequency spacing of ft between the solitons, the dimensionless collision length 

(normalized to the soliton characteristic length in Eq. (1-22)) is equal to 

3.526 
Lr. ft 

(4.5) 

where 3.526 is twice the FWHM in normalized time (recall that r/tc = 1.763) 

and ft is the difference between the normalized inverse group velocities of the 

faster and slower solitons. 

Since frequency is directly proportional to velocity in the anomalous 

dispersion regime, positive dQu/dz in Fig. 4.2 represents an acceleration of 

the faster soliton and negative dVtujdz represents a deceleration.   Since the 
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Figure 4.3. Negative frequency shift after collision on an amplifier. Energy is 
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acceleration during the first half of the collision in Fig. 4.2 is not balanced 

by the deceleration in the trailing half, a net negative velocity (frequency) 

shift remains after the collision, as depicted by the solid curve in Fig. 4.3. 

For comparison, the frequency variation in a lossless fiber (as in Eq. (3.10)) 

is illustrated by the dashed curve. The solid and dashed curves in Fig. 4.3 

are found by integrating over the corresponding curves in Fig. 4.2. Note that 

loss and amplification simply perturb the interaction that would have taken 

place in an ideal fiber. In Fig. 4.3, the frequency decreases and the faster 

soliton slows down (which means the slower soliton speeds up) because the two 

solitons attract most strongly during the second half of the collision, when the 

intensity of each pulse is larger.   In contrast, Fig. 4.4 depicts the frequency 
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Figure 4.4. Positive frequency shift after collision between amplifiers. Energy 
is plotted on dotted curve. 

shift when the collision occurs between amplifiers; the faster soliton speeds up 

(and the slower soliton slows down) since the attraction is stronger during the 

first half of the collision. 

To analytically solve for the permanent shift in fiu caused by the 

perturbation, we integrate Eq. (4.3), so that 

9 d 
Aüu   =    [dzjrj- ( f dtsech2(t + Ctz)sech2(t) 

—       "uloo "«l-oo ) (4.6) 

where f^L^ is the initial value of ttu and fij^ is the value of Clu after the 

collision.   For clarification, note that 6Q,U in Chapter 3 signified temporary 
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frequency shifts in an ideal fiber, whereas Af2u signifies the permanent fre- 

quency shift that remains after a collision. If we define variables U = g/Q. 

and V = fdtsech2(t + üz)sech2(t), we can integrate by parts in Eq. (4.6). The 

value of V as given by Eq. (3.10) is zero far away from the collision, so UV —► 0 

for \z\ —* oo and the residual shift is determined by the term — / VdU, as in 

Aüu = -i f dzj- ( [dtsech2(t + üz)sech2(t)\ . (4.7) 

If the normalized gain g is an arbitrary function of z, we may represent 

it in terms of its Fourier variable g(k) using 

g(z) =     dkg(k)exp(ikz), (4.8) 

such that dgjdz = i / dk kg(k) exp(ikz). Upon a change of variables, the inte- 

gral over t in (4.7) may be written as a convolution of sech (Qz) with itself, 

such that 

Ailu = ^ f dkkg(k) (fdz exp(ikz) [sech2(Qz) * sech2(Hz)] J .        (4.9) 

The Fourier transform of a convolution is given by the product of the individual 

transforms. Since the transform of sech2(flz) is given by 2x/(Osinhx), with 

x = irk/(2tt) (see reference [104]), 

32   /«> dk     x4 

Aa, 
7TZ Jo     k  sinn x 

where we have used the identity g( — k) = g"(k) by assuming that g(z) is real. 

Thus far, we have treated g as an arbitrary function of z. Of course, g 

is probably a periodic function of z, as in Fig. 4.1, with amplifiers periodically 

placed along the fiber with spacing La. Thus, the integral over k is more 

appropriately written as a Fourier series over a fundamental harmonic given 
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by A; = 2-K/La (with La normalized to the characteristic length), such that 

16La   ~       mV* „ 
An" = ^£sinhV^)Im"m' (   U) 

where x = irk/(2Q) — n2/(QLa) = 2.8LC/La.   The dimensionless quantity 

Lc/La is the ratio of the collision length to the amplifier spacing, which will be 

a very useful parameter in the following discussion. The Fourier coefficients in 

(4.11) are defined by 

g-m = Y~ / dzg(z) exp(-imkz), (4-12) 

where the amplifier is located an arbitrary distance zc before the collision at 

z = 0.   (This is to be distinguished from the soliton characteristic length zc 

in Chapter 1.)  We will typically refer to zc as the position of the center of a 

collision relative to an amplifier position. Insuring that g averages to one, the 

gain profile between amplifiers is 

= aLa«xp[-a(* + zc)] 
v  ' 1 -exp(-aLa) v        ' 

By solving for gm in (4.12) and taking the imaginary part, 

T      ~ _      CLLa  
lm9m   ~    [(aLay + (2*m)»]i/» X 

sin \(2irmzc/La) — tan_1(27rm/aZ-a)  , (4-14) 

so that Aüu in (4.11) may be solved accordingly.   As usual, the shift in the 

slower soliton is AQV = — Aüu. 

Rather than continuing to use normalized variables at this point, more 

insight is gained by translating into physical dimensions. The actual wave- 

length shift after a collision is given by AA = — 1.763(A2/c)Afiu/(27rr). After 

substituting for Atiu using Eqs. (4.11) and (4.14), 

oo 

AA(zc) = J2 cm sin (2irmzc/La - <f>m), (4.15) 
m=l 
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where 4>m = tan-1[27rm/(o:La)], and all variables now carry physical dimen- 

sions. The coefficients are defined by 

(0.2274) A2 La m3 :r4csch2(ma;) 
°m ~ cz0r[l + (27rm/aLa)2]i/2     ' ^16) 

where z0 is the soliton period, as in Fig. 1.6, and x — 2.8LC/La. While the 

magnitude of the wavelength shift increases with greater loss ctLa, it is inversely 

proportional to r3 (z0 is proportional to r2), so shifts decrease as the pulse 

width (or the soliton period) increases. 

In physical dimensions, the collision length Lc in the parameter x is 

found by multiplying 3.526/0 from Eq. (4.5) by the characteristic length using 

Eqs. (1.22) and (1.8). By substituting for tt from Eq. (1.31), 

L    = 2T 

kD(X)d\ 

where r is the intensity FWHM and D is the average value of the disper- 

sion coefficient D between two channels separated in wavelength by A. Given 

two wavelengths Ai and A2 and a dispersion slope of 5*0 at a zero dispersion 

wavelength of A0, the average value of the dispersion coefficient is 

D = S0 ^±h _ Ao) . (4.18) 

The length Lc in Eq. (4.17) is the distance over which two pulses move 2r with 

respect to one another given the relative group velocity (£>A)_1 between the 

pulses. Lc is plotted versus the channel spacing A in Fig. 4.5 for r = 20 and 

50 ps, where we assume D = 1 ps/nm-km. 

Figure 4.6 illustrates the wavelength shift from Eq. (4.15) for three 

values of Lc/La when T = 20 ps.    We have chosen La = 25 km, so collisions 
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amplifier spacing La = 25 km and average dispersion D = 1 ps/nm-km. 
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Figure 4.6. The residual wavelength shift in the faster soliton after a collision 
at zc for r = 20 ps, La = 25 km, and ~D = 1 ps/nm-km. 
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occur at amplifiers when zc — 0, 25, and 50 km. We have assumed typical 

system parameters of D = 1 ps/nm-km and a = 0.048 km-1 (0.21 dB/km 

loss) at a center wavelength of A = 1.55 /im, with a dispersion slope of So = 

0.067 ps/nm2-km at a zero dispersion wavelength Ao = 1.535 /im. For Lc/La = 

0.2, 0.6, and 2.0, the channels are centered about 1.55 /zm with spacing A = 8.0, 

2.67, and 0.8 nm, respectively. So, for example, the initial wavelength of the 

faster channel is 1.546 /im and the initial wavelength of the slower channel 

is 1.554 /zm when Lc/La = 0.2, such that D = 1 ps/nm-km. In an example 

with Lc/La = 0.6, if the collision occurs on the amplifier at zc = 25 km, 

the wavelength of the faster soliton is about 3.5 pm larger after the collision. 

Since a shift in wavelength is inversely proportional to a shift in frequency, the 

positive wavelength shift at each amplifier in Fig. 4.6 is consistent with the 

negative residual frequency shift in Fig. 4.3, whereas the negative wavelength 

shift between amplifiers is consistent with the positive frequncy shift in Fig. 4.4. 

We may also describe the wavelength shift by its root-mean-square 

value AArms, which will prove useful in the statistical analyses-of Chapter 5. If 

the shift in wavelength is represented by the Fourier series in (4.15), then 

/ oo        \i/2 

AXims=^£c2
mJ     , (4.19) 

where the cm are defined by (4.16). Plots of AA^ versus Lc/La are depicted in 

Fig. 4.7 for several different pulse widths. The rms shifts when r = 20 ps and 

Lc/La = 0.2, 0.6, and 2.0, as in Fig. 4.6, are AA™, = 0.75, 2.3, and 0.1 pm, 

respectively. Since the shift is inversely dependent on r3, the rms values for 

r = 50 ps are 2.53 = 15.625 times smaller than for r = 20 ps. Also, since the 

shift in the wavelength of the slower soliton is identical in magnitude to the 

shift in the faster soliton, the rms value is the same in either channel. 
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Figure 4.7.  The rms shift in wavelength resulting from collisions of length Lc 

across an amplifier spacing of La = 25 km if D = 1 ps/nm-km. 

The quantity x4csch2(mx) in Eq. (4.16) reaches a peak near x = 1.9 

and becomes small beyond i«6. Since x = 2.8LC/La, values of AA^ peak 

around Lc/La = 0.7 and become negligible beyond Lc/La sa 2, as illustrated in 

Fig. 4.7. Intuitively, this is reasonable since the average effects of loss and am- 

plification are small if collisions occur over multiple amplifiers. As an example, 

the frequency variation when Lc/La = 3, as depicted in the solid curve Fig. 4.8, 

differs negligibly from the variation in a lossless fiber, again depicted by the 

dashed curve. This is in contrast to Figs. 4.3 and 4.4, where Lc/La = 0.5 and 

Lc/La = 0.75, respectively. Given the relationship between Lc and the channel 

spacing A in Eq. (4.17), we plot Lc/La versus A in Fig. 4.9 for the specified 

values of La and D; corresponding values of AA^ are shown in Fig. 4.10. 
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Figure 4.8: Frequency variation with Lc/La = 3. 

For values of Lc/La > 2, as indicated by the region above the dashed line in 

Fig. 4.9, the values of A cannot be too large, since collisions occur over longer 

distances only if the group velocities of two channels are relatively close. 

The permanent wavelength (velocity) shifts caused by perturbations 

can significantly alter the arrival time of a soliton at the end of the fiber. If the 

fiber is lossless, the timing displacement in the faster soliton after a collision is 

given by Eq. (3.13), 

<^ro!l =  — 
0.1768 

(A/)V <4'20> 

where the minus sign indicates that the faster soliton moves forward in time. 

The effect of a perturbation may be included by adding a second term to 8tcou 
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to account for any residual wavelength shift, as in 

St = Stco]i + 5tTes. (4.21) 

For the wavelength shift depicted by Fig. 4.11, <$£cou is related to the area 

under the dashed curve. If the perturbative effect at position z is estimated by 

taking the difference d\(z) between the dashed and solid curves, then 

6trea = D  I     d\{z) dz *D A\(zc) (L - ze), (4.22) 
J—oo 

where L is the length of the fiber and AA(zc) is the asymptotic value of d\(z) 

after a collision at zc. Thus, the displacement in the arrival time of the faster 

soliton at the fiber output after a single collision is 

0.1768 
5t = DAX(zc)(L-zc)- 

(A/)V (4.23) 

c 

> 
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Figure 4.11: Wavelength shift during a collision centered at position zc 
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In a fiber with loss and amplification, AX(zc) is given by Eq. (4.15). A positive 

shift in wavelength in (4.23) delays the soliton and a negative shift advances 

the soliton, consistent with pulse behavior in the anomalous dispersion regime. 

The displacement in the slower soliton is equal in magnitude to St but opposite 

in sign. 

Loss and amplification have been the only perturbations we have an- 

alyzed thus far. The analysis would be similar for any other perturbation for 

which the NLSE is written according to Eq. (4.1). An example is a system in 

which the dispersion coefficient differs in each fiber making up the transmis- 

sion link, as analyzed in [62]. Unless fibers are selected carefully, the dispersion 

will inevitably vary between individual fibers. Equation (4.1) holds for such 

a perturbation because dispersion variations directly alter the peak power re- 

quired for stable soliton propagation. To apply our analysis to a perturbation 

of this kind, the Fourier variable g(k) in Eq. (4.10) must be replaced with 

the proper function describing the perturbative effect on the pulse intensity. 

If the perturbation is periodic in fiber position, the Fourier coefficients gm 

in Eq. (4.11) must be changed appropriately. Furthermore, the quantity La 

could be replaced with the more general term Lp to describe the period of the 

perturbation, such that AA^ becomes negligible for values of Lc/Lp > 2. 

While dispersion variations between fibers potentially degrade WDM 

soliton communication, they may also be used to negate the perturbative effects 

of loss and amplification discussed thus far. Taking the soliton peak power P0 

from Eq. (1.23), we define the soliton order N as[3] 

N = T5P (4'24) 

where iV = 1 for a fundamental soliton. It is apparent that the soliton order and 
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pulse width tc remain constant when P0 varies as long as the dispersion /?2 varies 

accordingly. If the energy varies exponentially, as in Fig. 4.1, the dispersion 

must vary exponentially as well. Hence, dispersion decreasing fibers have been 

proposed as a means of reducing or perhaps eliminating many of the negative 

effects of loss and amplification [62, 105], even for soli ton communications in a 

single wavelength channel. 

4.1.2 iV-soliton interactions in a perturbed fiber Equa- 

tion (3.35) demonstrates that a multiple soliton collision in an ideal fiber is 

effectively a sum of independent two-soliton interactions; in other words, the 

total interaction may be accurately estimated by linearly summing over each 

pairwise soliton interaction. For the ideal fiber in Section 3.3, this was shown 

to be true by asymptotically expanding the exact iV-soliton waveform, but it 

can also be demonstrated using the perturbed NLSE from Eq. (4.1). In an 

analysis parallel that used to describe CPM between two pulses, we replace u 

in Eq. (4.1) with u + v + w. The coupled NLSE is now given by three equations, 

"4? = ^ + ä[N2 + 2(M2 + H2)]« 

.8w 1 d2W r.     ,, ..    .,       ,    ,0NI 

~%~dz~   =   2dF+*N   +2(H   +M)]U'' <4-25) 

where FWM components are neglected as before. In the equation for u, CPM 

with v and w results from the summation over the intensities |i>|2 and \w\2. 

Thus, the mean frequency of u, as in Eq. (4.2), is described by 

d(uu)      2g  f d\u\ 
I ^f (M2 + H2)^ (4-26) dz E0 

Since the variation in u>u at a three-soli ton interaction is given by the sum of 

the individual effects with solitons v and w, by induction we see that iV-soliton 
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interactions are additive for any perturbation described by Eq. (4.1). This will 

prove useful in Chapter 5, where we will treat interactions between different 

soliton wavelength channels as independent stochastic processes. 

4.2    Soliton interactions at the transmitter and receiver 

We continue our analysis of perturbations by describing WDM in- 

teractions during collisions at the fiber input or output. It is not surprising 

that data can be degraded by soliton collisions at the fiber output. Optical 

receivers often require a frequency filter to limit noise and a photodetector to 

measure the optical power. If the frequency of a soliton at the output shifts 

significantly from its expected value because of a collision, the receiver might 

not detect the data. However, when the initial frequency separation between 

the soliton channels is large, the frequency shift in each soliton is small enough 

to prevent degradation of the data. Larger channel spacings are also helpful 

because interactions at the fiber input become phase dependent, even for WDM 

solitons, if the the channel spacing is too small[64]. The effects of collisions at 

the fiber output were discussed in [6, 75], where it was predicted that a channel 

spacing of five soliton spectral widths is sufficient to prevent large frequency 

shifts during collisions between an arbitrary number of channels. The dashed 

line in Fig. 3.5 indicates that the minimum channel spacings for pulse widths 

of r = 20 and 50 ps are 0.625 and 0.25 nm, respectively. 

Collisions at the fiber input may also be important, since velocity 

shifts at the input are permanent [65]; a timing displacement that results can 

cause intersymbol interference with a neighboring soliton if it does not also 

experience a collision at the input. When solitons interact at the fiber input, 

only that fraction of the collision that occurs inside the fiber is affected by 
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Figure 4.12. Frequency shifts resulting at fiber input for different initial pulse 
separations. 

the Kerr nonlinearity. For the faster of the two solitons, several examples are 

shown in Fig. 4.12, where the fiber input is at position zero in each plot. The 

dashed curves correspond to Fig. 3.6, and the solid curves demonstrate that 

solitons interact only during that part of the collision that takes place in the 

fiber. (Here we assume the fiber is lossless. Loss and amplification are included 

in the analysis in [66].) 

In Fig. 4.12(a), the solitons are separated by one pulse width at the 

fiber input, as denoted by t0 = r, and only the trailing part of the collision 

occurs in the fiber, so the frequency of the faster soliton decreases somewhat. 

In (b), the center of the collision occurs at the fiber input since the initial 

separation is zero. The frequency shift is largest during such a collision, since 

the first half of the collision takes place in the absence of any nonlinearity while 
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Figure 4.13. Permanent frequency shift at fiber input as a function of initial 
separation. 

the second half occurs in the fiber. In (c), the bulk of the collision occurs in 

the fiber, but since the pulses are only one pulse width apart at the input, the 

magnitude of the residual shift is identical to the shift in (a). Finally, almost 

the entire collision takes place in the fiber in (d) — the nonlinearity affects 

most of the collision, so only a very small shift remains after the collison. 

The shift in the frequency of the faster soliton after a collision at 

the fiber input is always negative, as seen in Fig. 4.12, while the shift in the 

frequency of the slower soliton is always positive. The normalized magnitude 

of any shift as a function of the initial separation t0 is depicted by Fig. 4.13. 

As an example during a collision between two 20 ps solitons with t0 = 0, the 

wavelength shift in the faster of the two solitons is at most 0.027 nm if there 

are five soliton spectral widths between the channels, such that A = 0.625 nm 
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(see Fig. 3.8). The shift is smaller if there are greater than five spectral widths 

between channels. The corresponding shift in the arrival time at the end of 

the fiber depends on the length and dispersion of the fiber. Such shifts can 

be reduced by using frequency filters [32], by synchronizing the sources of each 

soliton channel at the fiber input[62], or by increasing the channel spacing ft. 

4.3    Fiber nonlinearities 

We conclude this chapter by briefly considering how fiber nonlinear- 

ities other than SPM affect WDM soliton propagation. The nonlinearities 

we are interested in include four-wave mixing, stimulated Raman scattering 

and stimulated Brillouin scattering. While these processes have not yet been 

analyzed in detail for WDM soliton systems, their influence on WDM commu- 

nications is the subject of much research[97, 102, 103]. Here we simply predict 

their impact on WDM soliton transmission. 

4.3.1 Stimulated Raman scattering Stimulated Raman scat- 

tering(SRS) in fiber[97, 3] arises from an interaction between optical photons 

and the molecules of fused silica. An incident photon is scattered to a lower 

frequency while the molecule undergoes a transition to a different vibrational 

state. The optical wave generated at the lower frequency is referred to as the 

Stokes wave, while the incident wave is referred to as the pump. If the pump is 

conincident with a second wave having frequency identical to the Stokes wave, 

the second wave experiences gain at the expense of the pump. In reality, a 

continuum of vibrational frequencies exist in an amorphous material such as 

fused silica, so the gain bandwidth over which SRS occurs may be quite large. 

In optical fiber at a wavelength of 1.55 /zm, the bandwidth is around 15 THz, 

with a peak gain coefficient oigR = 7x 10-12 cm/W at a Stokes shift of 13 THz. 
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If only a single optical wave is transmitted into the fiber - as would be 

true for communications in a single wavelength channel - Raman scattering may 

spontaneously generate weak signals across the Raman gain spectrum. If the 

pump power exceeds a certain threshold, the frequency component downshifted 

13 THz from the pump builds exponentially. The critical pump power at which 

this occurs in conventional fiber is 

Pc = ^, (4.27) 

where A<.R is the effective area of the fiber cross-section and L& is the effective 

length of a dissipative fiber. For typical values of Ae{{ = 50 fim 2 and Les «2 

l/a = 1/0.048 = 21 km, the critical peak power required for spontaneous 

Raman scattering is slightly greater than 1 W. Given fundamental peak powers 

as in Fig. 1.6, it is clear that spontaneous Raman scattering is not of significance 

until the soliton pulse widths are around 1 ps or less. The soliton self-frequency 

shift mentioned briefly in Section 1.2 is an example. 

Because of its large gain bandwidth, SRS can play a significant role 

in the degradation of WDM systems. If the aggregate power in multiple wave- 

length channels is large enough, the wavelength channels at higher frequencies 

can act as pumps for the channels at lower frequencies. Given a bandwidth 

of 15 THz, crosstalk induced by SRS may result even for channels separated 

by 100 nm. If there are N channels with frequency spacing A/, the critical 

power-per-channel at which signal degradation occurs, as derived in [97], is 

equal to 

where A/ must be specified in GHz and Pc is in watts. In WDM systems with 

high bit rates and non-zero group velocity dispersion (as would be true in a 
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soliton system), the critical power increases by a factor of two. Taking this 

into account, Fig. 4.14 depicts the critical power required in each channel for 

SRS to degrade the system. The solid curve depicts Pc for r = 50 ps, where 

a frequency spacing of five soltion spectral widths is given by A/ = 1.575/r = 

31.5 GHz, and the dashed curve depicts Pc for r = 20 ps and A/ = 78.8 GHz. 

For 20 ps soli tons with peak power around 4 mW (see Fig. 1.6), greater than 

30 channels are possible before SRS degrades the system; for r = 50 ps and a 

peak power less than 1 mW, greater than 100 channels may be possible. 

4.3.2 Stimulated Brillouin scattering The process of stimu- 

lated Brillouin scattering(SBS) is similar to SRS in that energy from an in- 

coming photon acts as a pump for a Stokes wave at a lower frequency[97, 3]. 

is 
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However, for SBS the energy conversion generates an acoustic phonon instead 

of an optical phonon. SBS is an electrostrictive process in which an incoming 

optical wave modulates the index of refraction by creating an acoustic pressure 

wave. Subsequent incoming light is scattered by the index grating, experienc- 

ing a Doppler shift to a lower Stokes frequency. Since energy and momentum 

are conserved, the actual frequency shift may be derived in momentum space, 

where the Bragg matching condition is met only across a narrow bandwidth 

and if the Stokes wave propagates backwards relative to the pump. The typical 

SBS gain bandwidth of 20 MHz is much smaller than for SRS and occurs at a 

Stokes shift of fB = 2nva/\ = 11.1 GHz, where n = 1.445 is the index of refrac- 

tion at A = 1.55 /im and va — 5.96 km/s is the velocity of the acoustic wave. 

The peak value of SBS gain at this frequency shift is gs = 4 x 10~9 cm/W, 

which is over two orders of magnitude greater than the SRS gain #A[97]. 

Since the bandwidth for SBS is small, crosstalk occurs between two 

WDM channels only if the frequency spacing is precisely 11.1 GHz. For a typ- 

ical WDM soliton spectral spacing, this translates into a pulse width greater 

than 100 ps, so it is unlikely that crosstalk will be the dominant SBS effect 

in soliton transmission. However, the critical power level at which sponta- 

neous Brillouin scattering can degrade a system is much lower than that for 

spontaneous Raman scattering. In conventional fiber, the critical power, 

ft=^, (4.29) 

is only 2.5 mW, where the previous values of effective area and length were 

used. While this power level is approximately the same as the peak power for 

20 ps solitons, it is derived under the assumption that the incident power is 

CW (continuous wave). If data is modulated at high rates, the gain coefficient 
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gB must be scaled to a lower value since the gain only occurs over a narrow 

spectrum. If data is amplitude-shift keyed in a non-return-to-zero(NRZ) format 

with 100% modulation depths, the gain is reduced according to 

"11/? 
9 = 9B 12 " 4A^ (1 ~ exP(-A^/5))J > (4-3°) 

where AvB = 20 MHz is the gain bandwidth and B is the bit rate. For bit 

rates greater than 1 Gb/s, we find g = </B/4, so that the critical power at which 

SBS degrades data is raised to 10 mW, independent of the pulse width. This 

power level is depicted by the dotted curve in Fig. 4.14, where we see that SBS 

is the dominant effect when there are fewer than about 30 channels. 

4.3.3 Four-wave mixing Four-wave mixing(FWM) is a para- 

metric process that originates from the same nonlinearity that causes SPM 

and CPM. As seen at the end of Chapter 3, FWM occurs during WDM soliton 

collisions as a result of mixing between optical waves of different frequencies. 

For two waves with frequencies fx and f2, FWM components appear at side- 

band frequencies of 2/i - f2 and 2/2 - /x. In terms of a coupled NLSE describing 

the evolution of two pulses in Chapter 3, the FWM components correspond to 

the terms u2v* and v2u* which were dropped in the derivation of Eqs. (3.4) and 

(3.5). The presence of these components is easily seen in the three-dimensional 

plots of multi-soliton collisions in Section 3.3.2. 

The impact that FWM has on a WDM system is rather difficult to 

assess, as it is dependent on many system parameters, including the channel 

spacing, fiber dispersion, fiber length and cross-sectional area, as well as the 

power in each wavelength channel. For FWM to efficiently generate power at 

different frequencies, though, phase matching must occur, a condition which is 
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not met if the group velocity mismatch between two channels is large. Con- 

sequently, large frequency spacings or large dispersion coefficients discourage 

the onset of FWM. In a dispersion shifted fiber with D — 1 ps/nm-km, the 

FWM interaction is inefficient for frequency separations greater than around 

50 GHz[97], which corresponds to soliton pulse widths less than about 30 ps. 

For 50 ps solitons, the frequency spacing is around 30 GHz, so FWM appar- 

ently affects only neighboring channels. Hence, the critical power level at which 

FWM degrades a system is independent of the number of wavelength channels, 

as was also true for SBS. 

The degree to which FWM will affect WDM soliton systems is unclear 

at this point. While it has been suggested that FWM can degrade systems at 

power levels as low as a few milliwatts[97], under proper conditions it was also 

shown that FWM only generates spurious energy that disperses away quickly 

after collisions, even for non-soliton pulses[102]. However, it seems apparent 

that FWM can still degrade standard NRZ pulses in a wavelength channel 

(even for single channel communications[106, 107]) that is located too close to 

the wavelength of zero dispersion. The spurious energy created by FWM does 

not disperse away in such a channel[102]. Since soliton systems operate with 

non-zero dispersion, it has been suggested that WDM soliton systems might 

be the ideal choice for long-distance communications[76]. 



CHAPTER 5 

SYSTEM IMPLICATIONS 

Thus far, the nonlinear interactions during collisions between WDM 

solitons have been analyzed in detail. We have discussed how WDM solitons 

interact in ideal fibers and described how interactions are perturbed by energy 

dissipation and amplification. It was also shown that the equations describing 

interactions between two solitons are easily extended for an arbitrary number 

of solitons by summing over each individual two-soliton interaction. The em- 

phasis of this chapter is to determine whether WDM soliton collisions preclude 

accurate transmission of data. First, we review current restrictions on the use 

of WDM solitons in fiber communication systems. We then analyze more prac- 

tical implications of WDM soliton communications in a statistical analysis of 

soliton timing jitter and system performance. 

5.1    WDM soliton communication systems 

The goal of any communication system is the transfer of information 

from one place to another. The standard components of a fiber communication 

system are illustrated in Fig. 5.1. The information is oftentimes encoded as 

a stream of binary data bits that modulates the output of an optical source. 

Soliton sources were discussed specifically in Chapter 2. For WDM commu- 

nications, the optical energy from multiple sources having unique wavelengths 

must be combined at the input of the fiber and separated at the output of 

the fiber, usually with a grating multiplexer and demultiplexer, as depicted by 
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Figure 5.1: A typical fiber communication system. 

Fig. 5.2, where Ai < A2 < A3. While Fig. 5.2 could be implemented with 

bulk optical components, an inexpensive device which integrates the transmit- 

ters(receivers) with the multiplexers(demultiplexers) would be more compact, 

more robust, and more practical. This has been a major hindrance to more 

extensive use of WDM in communications. A substantial amount of research 

is being conducted to develop such devices[108, 109, 110]. 

The fiber channel for WDM communications actually consists of mul- 

tiple data channels, each represented by an individual wavelength or spectral 

component.   For most WDM communications, the wavelength channels are 

Transmitters 
Grating 
Multiplexer 

Grating 
Demultiplexer 

*3 

Receiver 

Fiber 

Figure 5.2. Wavelength multiplexing and demultiplexing in a fiber communi- 
cation system with three wavelength channels. 
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independent of one another, meaning that communication across multiple in- 

formation channels occurs simultaneously in a single physical fiber channel. 

More recent research has explored the possibility of encoding information in 

the spectral domain, in a so-called bit-per-wavelength(BPW) fashion, rather 

than in the time domain[lll, 112]. In such a system, the wavelength channels 

are not independent, since each wavelength represents a single bit in the data 

byte or packet. Data encoded in this manner might use the wide transmission 

bandwidth of optical fiber most efficiently. We will assume that individual 

wavelength channels are independent of one another, although the results may 

be applied to BPW communications with simple modifications. 

In WDM soliton systems, the results of Chapters 3 and 4 imply that 

tradeoffs must be made in regards to the optimal channel spacing and the 

number of wavelength channels which may be multiplexed. When the channel 

spacing A is small, the maximum value of the wavelength shift during a collision 

is as large as depicted in Fig. 3.8. Since a minimum channel spacing of five 

soliton spectral widths may be required to prevent degradation of data at the 

fiber output because of such a shift [6], the minimum wavelength spacing may 

be defined as 

A /A2\ L575 ,_. Amin = [T) ~7~' (    } 

where A/ = 1.575/r is taken from Eq. (3.3). Values of A„un correspond to the 

dashed line in Fig. 3.5. 

In contrast, as the channel spacing increases, the magnitude of a per- 

manent wavelength shift after a collision increases, as depicted in Fig. 4.10. 

Although the permanent shifts, as represented by AArms, are only on the order 
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of picometers, many such shifts over the full length of the fiber may cause sig- 

nificant displacements in pulse arrival times[62]. It is typically suggested that 

the ratio of the collision length to the amplifier spacing must be greater than 

two to prevent such jitter[62, 63, 2]. Given the definition of Lc in Eq. (4.17), a 

maximum channel spacing may be defined to insure that Lc > 2La, as in 

T 
"max — 

DLa' 
(5.2) 

Values of Amax correspond to the dashed line in Fig. 4.9. The variation of Amjn 

and Amax with r is shown in Fig. 5.3 for the specified values of the amplifier 

spacing La and dispersion D. 

Current limits imposed on a WDM soliton system by Eqs. (5.1) and 

(5.2) are easy to determine.  Since all the channels in the system must meet 
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Figure 5.3. Suggested minimum and maximum allowable wavelength spacings. 



112 

the condition that Lc > 2La, Amax defines the maximum bandwidth within 

which all channels may be multiplexed. Hence, the maximum number of WDM 

channels that may be multiplexed on the fiber is restricted to 

Nn 1 + (5.3) 

as plotted by the dotted curve in Fig. 5.4. Since only integral numbers of 

channels are physically possible, the actual number of channels allowed at each 

pulse width are shown by the solid lines. Noting that Amjn is larger than Amax 

for values of r < 18 ps, WDM is theoretically possible only for soliton pulse 

widths greater than 18 ps (A^ must be at least two). Furthermore, the spectral 

bandwidth in Fig. 5.3 over which soliton channels may be multiplexed is limited 
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Figure 5.4. Maximum number of WDM channels possible at each pulse width 
for the listed parameters. 
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to less than 2 nm for pulse widths of 50 ps or less. Given a typical EDFA 

bandwidth of approximately 30 nm, a maximum WDM soliton bandwidth of 

2 nm is both inefficient and inflexible. This is especially true since it is difficult 

to multiplex wavelength channels as close together as 0.25 nm — the value of 

Amin for T = 50 ps. Using the channel data rate R = 1/T = l(5r) plotted on 

the upper axis of Fig. 5.4, the maximum throughput RNm&x is computed for 

each pulse width and plotted in Fig. 5.5. The discontinuities correspond to 

the discretization in channel number. 

Since present WDM technology may limit further reduction of Amin, 

it is reasonable to treat A^n as a realistic limitation to the system. Thus, in 
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Figure 5.5. Maximum throughput at each pulse width as limited by A^i, and 
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the following discussion we always assume that adjacent wavelength channels 

are spaced by five soliton spectral widths, as given by Amjn in Eq. (5.1) and 

plotted in Fig. 5.3. However, Amax 
was defined according to Eq. (5.2) simply 

because values of AA,^ become negligibly small when Lc/La > 2 in Fig. 4.7. 

In other words, the restriction on Amax is based on worst-case assumptions 

about the system. Actual predictions of timing jitter and bit-error-rates that 

result from WDM soliton interactions have never been formulated, and thus it 

is uncertain whether Amax as given by Eq. (5.2) is realistic. By analyzing the 

statistics of WDM soliton interactions, more reliable limits on communication 

with WDM solitons may be derived. 

Two random processes are significant for our discussion. First, we 

assume the data is encoded in some psuedo-random fashion. It is impossible 

for the data to be entirely random, as this would represent noise. However, the 

analysis is simplified by treating the data as random and uniformly distributed. 

Thus, we assume that bit values of zero and one each occur with probability 

1/2 and that individual bits are statistically independent of one another. In a 

WDM soliton system, the presence of a soliton indicates a one and the absence 

indicates a zero. If data is random, soliton collisions occur only if the bit 

values in both channels are one. A second random variable that influences 

WDM soliton interactions is the timing or position of any collision. As an 

example, we note that adjacent 50 ps solitons with a bit period of 250 ps are 

only about 5 cm apart in the fiber since the group velocity is about 0.02 cm/ps. 

Thus, in a single wavelength channel there are about 200 x 106 solitons in a 

fiber 10000 km long, with as many as 500 x 103 solitons between two amplifiers 

separated by 25 km. Hence with multiple wavelength channels, collisions will 
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be occuring throughout the fiber at random positions. 

Two effects that we ignore are phase and amplifier noise. It was al- 

ready shown in Section 3.2.1 that soliton interactions are phase independent, 

so randomness in phase is of no consequence. However, noise will ultimately 

limit a WDM system, just as it limits communications over a single wave- 

length channel. Amplifier noise affects both the energy of the soliton[ll] and 

the timing, as described by the Gordon-Haus effect[22]. Such effects have been 

examined in detail and may be applied to a WDM soliton system in a straight- 

forward manner. We neglect them here, and focus on determining the timing 

jitter that is intrinsic to soliton interactions in a WDM system. 

5.2    Timing jitter in WDM soliton systems 

As given by Eq. (4.23), the timing displacement that results from a 

single collision between two WDM solitons is 

8t   =   6tres + 8tcou 

=   DAX(zc)(L-zc)-^^-. (5.4) 

This is the shift in the arrival time of the faster soliton at the end of the fiber. 

(The slower soliton shifts by the same amount but in the opposite direction.) 

Collision-induced timing shifts are illustrated in Fig. 5.6, where solitons on 

wavelength channel Xi are shown separately from solitons on a second channel 

A2. The bit value in the jth bit slot of the second channel is defined as bj. 

Solitons in bit slots i — 1 and i in \i are colliding with solitons in bit slots 

j — 1 and j, respectively, in A2. The position at the center of each collision 

is zc, so each soliton shifts by St. Soliton i + 1 in channel one does not shift 

because it is not colliding with any soliton in channel two — the bit value in 
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j-1 i+i 

•    '• Vi=0 

Time 

Figure 5.6. Timing shifts St at two collisions and absence of shift if no collision 
occurs. 

the corresponding bit slot of channel two is 6J+1 = 0. 

Since the solitons in bit slots i and i — 1 of channel one both shift 

by 6t, they cannot interfere at the end of the fiber. However, solitons i and 

i + l might interfere if 6t is large. (Here we assume that solitons exist in both 

bit slots i and i + l. We will consider a more general scenario momentarily.) 

Hence, it is the relative shift 

A^.j+i = (bj ~ bj+i)$t (5.5) 

that potentially degrades data in bit slots i and i + 1 of channel one at the 

output of the fiber. If Atjj+i is positive, solitons i and i + l may be too close at 

the end of the fiber, whereas if Atjj+i is negative, they may be too far apart, 
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possibly interfering with bit slots i — 1 or i + 2. Although there is only one bit 

period T = 5T between solitons in Fig. 5.6, adjacent solitons in channel one 

may actually be separated by several bit periods p since data is encoded on 

each channel. Thus, the relative shift may be redefined in more general terms 

as 

Af j,j+P = (bj ~ bj+P)St. (5.6) 

Since the reception of too many consecutive zeros at the receiver often disrupts 

clock extraction and degrades receiver sensitivity, p is typically no greater than 

around five. 

In reality, numerous collisions occur in the fiber. To clarify the situ- 

ation, Fig. 5.7 depicts the fiber profile, where an 'X' marks the center of each 

possible collision. There are at most n collisions, with 

where the fiber length is L and the collision period is 

T 
Zc = =-. (5.8) 

DA v     ; 

Zc is the minimum distance that soliton i propagates between each collision. 

The position of a collision between soliton i in channel one and soliton j in 

channel two is now defined as Zj, where j takes on at most n values. Whether 
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Figure 5.7: Profile of collision positions in the fiber. 
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a collision actually occurs depends on the value of bj at each position Zj. With 

regards to Fig. 5.6, if the solitons on Ai are faster than the solitons on A2, 

then soliton i will collide with soliton j — 1 at position Zj-\ after propagating a 

distance Zc; hence, z^x — ZJ = Zc. As before, Lc is the collision length defined 

in Eq. (4.17), so if T — 5r, the collision period is related to the collision length 

by ZcjLc = 2.5. Note that if positions Z\ and zn are either too close or too far 

from the ends of the fiber, collisions may occur at the fiber input or output, 

and the results in Section 4.2 apply. 

The total relative shift between two solitons in channel one after n 

possible collisions is 

j+p = E(*i- 
i=i 

n 

= 2>;- 

- bj+p) St 

- bj+p)(6tres + Stcon) 

n 

-bj+p)\DA\(zj)(L-z 

-0.1768/(A/)2r]. 

i) 

(5.9) 

Carrying out the summation, the total shift becomes 

S AtJ,j+P   =   E(bj ~ bj+p) Sties 
j=i j=i 

p 

+ Stcoü J2(bj - bj+n). (5.10) 
j=i 

We see in this equation that most of the terms related to Stcon cancel if p is 

small. Adjacent solitons in Ax collide with nearly identical solitons from A2 

over the full length of the fiber, and since Stcoü is identical for each collision 

(note that it is independent of ;'), only a few terms remain. The terms that do 

not cancel contribute little to the overall variance in arrival times (as we shall 
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see momentarily), so we approximate the total relative shift by 

n 

At     =     Yl AbJ Stn» 

=   JZMj-DAXjiL-Zj), (5.11) 

where Abj = bj — bj+p and AXj = AX(ZJ). Hence, only residual shifts Stres 

significantly affect the relative arrival time of two solitons at the end of the 

fiber. Simply stated, it is primarily perturbations which cause timing jitter at 

the end of the fiber. 

If we arbitrarily choose values for the collision positions as 

z j (n-j)Ze (5.12) 

and substitute for L and Zc in Eq. (5.11) by using Eqs. (5.7) and (5.8), the 

relative shift is simplified, as in 

n AA- 
At = T^jAbj^-. (5.13) 

The result in Eq. (5.13) agrees with intuition since the value of At will be 

large relative to the bit period T whenever the wavelength shifts AXj are large 

relative to the channel spacing A. The meaning of At is analogous to that 

of Atjj+i in Eq. (5.5); adjacent solitons move closer to one another when At 

is positive and they move farther apart when At is negative. Whether the 

absolute value of At is too large depends on how much jitter the receiver can 

withstand. 

Since we assume the data is random and uniformly distributed, the 

quantity Abj equals zero with probability 1/2, or ±1, each with probability 

1/4. Furthermore, since the values of Zj are random and unrelated to the 

positions of the amplifiers (or any other perturbation), the wavelength shifts 
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AAj are also random, and At is a sum of products of the two random variables, 

Abj and AAj. The probability density function of a product Z = XY of two 

independent random variables[113] is solved using 

fz(z) = J^fx(£jfY(y)dy, (5.14) 

where fx(x) and /y(y) are the probability density functions of X and Y. When 

applied to the product Abj AAj, the mean is zero and the variance is 

«AWH<AA™. (5,5) 

as derived in the appendix in Section A.3. The quantities (AA) and (AA2) are 

the mean and variance, respectively, of the wavelength shifts AAj. 

The variance of a sum of independent random variables is given by 

the sum of the variances, so for Eq. (5.13) we write 

Since for large n 

(At^Q2±f(^±i^i). (M.) 

E;' = "(" + f" + 1)^. (5.i7) 
the variance in At is approximately 

(A^„3(^(<M!+iAAT). (,18) 

This is the variance in the relative displacement of adjacent solitons in either 

of the two channels at the fiber output. It is the most general result of the 

analysis with two wavelength channels. By substituting for n from Eq. (5.7), it 

is easy to see that the variance is proportional to the system length, increasing 

in relation to L3. This is analagous to the L3 dependence of Gordon-Haus 

timing jitter[22] resulting from ASE noise.   Furthermore, individual terms in 
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the summation of (5.16) are small in relation to the total variance (At2) in 

(5.18), given the limit 

lim^- = 0      for all j = l,...,n, (5.19) 
n-»oo nJ 

so the Lindeberg condition of the Central Limit Theorem[114] holds and the 

distribution of At approaches the Gaussian distribution for large n. (Values of 

n are usually greater than ten and will oftentimes be in the hundreds.) 

To apply Eq. (5.18) specifically in a fiber with loss and amplification, 

the average value of the wavelength shift from Eq. (4.15) is (AA) = 0 (there is 

no dc term in the Fourier series), so its variance is 

oo 

(AA2) = AALS = £ M2 , (5.20) 
m=l 

where the coefficients cm were defined in Eq. (4.16). Thus, the jitter in relative 

arrival times in a fiber with loss and amplification is given by the variance 

(A*2) = n3 (±)   ^i, (5.21) 

and the standard deviation 

^ = "3/2(i)(^f)-' <5-22> 
In a practical application of Eq. (5.22), Figs. 5.8 and 5.9 depict the standard 

deviation as a function of the system length for values of Lc/La — 2 and 

Lc/La = 0.7, respectively. As an example, we compute the value of J(At2) 

when r = 20 ps for L = 10000 km (the maximum transoceanic distance). With 

Lc/La = 2, we find in Fig. 4.7 that AArms = 0.0001 nm and in Fig. 4.9 that 

A = 0.8 nm. If T = 5r = 100 ps and D = 1 ps/nm-km, the collision period 

is Zc = T/(DA) = 100/(1)(0.8) = 125 km and the total number of collisions 
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is n = L/Ze = 10000/125 = 80, so the standard deviation is y/{At2) = 3.7 ps, 

close to the value shown in Fig. 5.8 at L = 10000 km. Estimates of jitter using 

Eq. (5.22) match recent numerical estimates in [70]. 

To estimate the bit-error-rate(BER) resulting from Eq. (5.21), we 

make an assumption about how much jitter the receiver can tolerate by defining 

a parameter r to measure receiver sensitivity. If the maximum value of \At\ 

allowed by the receiver is given by rT = 5rr, the receiver is more sensitive to 

jitter in the arrival times of adjacent solitons as r decreases. The actual value 

of r in a system cannot be defined precisely without knowing many details 

about the receiver, but as an example, if r — 2/5, then \At\ must be less than 

2r for the receiver to detect data accurately. If adjacent solitons are initially 

separated by T = 5r at the input, they may be spaced no closer than 3r 

and no farther than IT at the output for the receiver to detect each bit. If 

p = 3 between two solitons, the initial spacing is 3T = 15r, so they must 

be separated by at least 13r and by at most 17r at the fiber output for the 

receiver to detect data. Since At is Gaussian distributed, the bit error rate is 

computed according to 

BER=W-/    exp(-x2/2)dx, (5.23) 

where the lower limit of integration is x0 = rT/J(At2). In terms of a comple- 

mentary error function, we have 

BER   =   erfc (x0/V2~) 

2    r°° 
=   -= /    exp(-x2)dx. (5.24) 

s/2 

The BER is 10-9 when x0 = 6.1 and 10~12 when x0 = 7.1.   For the data in 

Figs. 5.8 and 5.9, error rates are shown in Figs. 5.10 through 5.12. For 
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Figure 5.12: BER for r = 50 ps and Lc/La = 0.7 at various system lengths. 

r = 20 ps and Lc/La = 2 in Fig. 5.10, the BER is less than 10"12 up to 

lengths of 13000 km for r = 0.4 (the relative shift can be as large as 2r). 

The BER is very dependent on receiver sensitivity, as seen by the difference 

between the curves for r = 0.2 and r = 0.4. A similar plot for r = 50 ps 

and Lc/La = 2 is not shown because the error rates are well below 10-16 

for lengths up to 20000 km. If r = 20 ps and Lc/La = 0.7, as shown in 

Fig. 5.11, the BER increases dramatically, as would be expected, so that it 

is impossible to transmit WDM solitons over any distance greater than about 

1000 km. However, for T = 50 ps and Lc/La = 0.7 in Fig. 5.12, we see that 

WDM solitons can still be transmitted over relatively long distances even with 

Lc/La < 2. It seems clear from these results that Amax in Eq. (5.2) may be 

overly conservative, at least for pulse widths nearing 50 ps. 
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Before analyzing jitter for an arbitrary number of wavelength chan- 

nels, we estimate the error made by approximating the total jitter by Eq. (5.11) 

instead of using the exact value in (5.10). The variance of the quantity (bj — 

bj+n) in Eq. (5.10) is 1/2, so it is rather straightforward to show that the 

contribution of the second term in Eq. (5.10) to the variance of At is given by 

(Af2)corT = ^coii)2, (5.25) 

where we label this as the correction factor to (Ai2). With inclusion of this 

term, the corrected BER is 

BERcorr = erfc (rT/^2({At2) + (A*2)corr)) . (5.26) 

The accuracy of Eq. (5.11) is estimated for r = 20 ps by plotting the two curves 

from Fig. 5.10 again in Fig. 5.13, where the dashed and dotted curves now 

illustrate BERcOIT for the specified values of p. We see that the correction factor 

becomes more significant if adjacent solitons are farther apart (p increases), if 

the receiver is more sensitive (r decreases), or if low error rates are required. In 

a full analysis, the value of p must be treated as a random variable, accounting 

for psuedo-random properties of any data encoding scheme that is used. For 

purely random data, we can show that the average value of p is no greater than 

two in a data stream of infinite length. With multiple wavelength channels in 

the system, the contribution from each additional channel is very small; the 

correction factor in (5.25) scales according to 1/(A/)4 since StC9n in Eq. (5.9) is 

proportional to 1/(A/)2. Consequently, the approximation made in Eq. (5.11) 

is valid regardless of the number of channels. Timing jitter in a system with 

an arbitrary number of channels is the subject of the next section. 
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5.3    Performance limits in WDM soliton systems 

The results in Section 3.3 and in [101] demonstrate that interactions 

between multiple channels are linearly additive if adjacent channels are asymp- 

totically separated in frequency. Hence, it is easy to modify Eq. (5.21) if there 

are multiple wavelength channels; the total variance in the relative arrival times 

of adjacent solitons in the pth of iV channels is simply a sum of the variances 

resulting from interactions with the other N — I channels, as in 

<A*2)P 

N (AA2) PI 

9=1 
A vi, 

N 

= E 
9=1 

L \3 (T_ 

zr) I A 

6 

i2 (AA2) P9 (5.27) 
PI , 

The channel spacing, collision period, and variance in wavelength shifts be- 

tween the pth and qth. channels are given by Apq — |Ap — AJ, Z?q = T/(DpqA.pq), 
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and (AA2)pq, respectively. The average dispersion between the channels is 

Dpq = So(Xp'+ Xq — 2A0)/2, where So is the slope of the dispersion at the zero 

dispersion wavelength A0. The BER in the pth channel is 

BERp = erfc (rT/y/-2(At2),) , (5.28) 

where the complementary error function is defined in (5.24). 

Equations (5.27) and (5.28) may be applied in a system with loss and 

amplification just as in previous examples with only two wavelength channels. 

Unless explicitly stated otherwise, we assume the following parameters: 

• amplifier spacing La = 25 km; 

• dispersion coefficient D — 1 ps/nm-km at 1.55 fim and dispersion slope 

So = 0.067 ps/nm2-km at a zero dispersion wavelength Ao = 1.535 /im; 

• attenuation a = 0.048 km-1 or 0.21 dB/km; 

• adjacent channel spacing A = Amjn as defined by Eq. (5.1) and depicted 

in Fig. 5.3; 

• receiver sensitivity r = 0.4 requiring \At\ < 2r; 

• bit period T = 5r and data rate R = 1/T in each channel. 

The C program which computes the jitter for an arbitrary number of channels 

is listed in Appendix B. 

As an example with four 20 ps channels and L = 10000 km, Table 5.1 

lists the standard deviation in At and the BER in each channel for the pa- 

rameters listed above. Since the jitter in each channel is considerably larger 

than the pulse width, the BER in each channel is much too high for accurate 

transmission of data. Jitter is worse when channels are farther apart (since col- 

lisions occur over shorter distances if Ap, is larger), consistent with the plots 

in Fig. 4.10. Hence, in this example, the jitter is largest in channels one and 
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four. If either the dispersion coefficient or the amplifier spacing is halved, the 

ratio Lp
c
qILa = IT j{Dpq Apq La) is twice as large, so we expect the results to 

improve. This is demonstrated in Table 5.2, where the average dispersion is 

0.5 ps/nm-km, and in Table 5.3, where the amplifier spacing is 12.5 km. 

Equation (5.3) predicts a value of Nm&x = 3 for these parameter values; in 

reality, we see that four channels are possible in each case since the error rate 

in each channel is no greater than 10~23. 

Equations (5.27) and (5.28) also enable us to determine how much 

Table 5.1. Jitter and BER in four 20 ps channels at a distance of L = 10000 km. 
Wavelength 

Ap (nm) 
Aa = 1549.0,62 
A2 = 1549.688 
A3 = 1550.312 
A4 = 1550.938 

Dispersion 

D (ps/nm-km) 
0.94 
0.98 
1.02 
1.06 

Standard deviation 

«A*2)p)1/2 (ps) 
125 
49.7 
39.2 
129 

BERp 

10" 
10 -l 

10 -l 

10" 

Table 5.2.   Jitter and BER in four 20 ps channels at a center wavelength of 
/zm with L = 1( 000 km. 

Wavelength 

Ap (nm) 

Dispersion 

D (ps/nm-km) 

Standard deviation 

«A*2)p)1/2 (ps) 

BERp 

Ai = 1541.562 0.44 2.77 < io-30 

A2 = 1542.188 0.48 0.161 < IO"30 

A3 = 1542.812 0.52 0.055 < io-30 

A4 = 1543.338 0.56 2.78 < io-30 

Table 5.3. Jitter and BER in four 20 ps channels with L = 10000 km and with 
ier spacings reduced to La — 12.5 km. 

Wavelength 

Ap (nm) 

Dispersion 

D (ps/nm-km) 

Standard deviation 

((A*2)p)1/2 (ps) 

BERp 

Ai = 1549.062 0.94 3.98 io-23 

A2 = 1549.688 0.98 0.179 < io-30 

A3 = 1550.312 1.02 0.105 < IO"30 

A4 = 1550.938 1.06 3.98 10-23 
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flexibility there is in choosing the best channel spacing. Table 5.4 demon- 

strates the jitter and error rates in eight 50 ps channels, again at a distance 

of 10000 km, with an adjacent channel spacing of A = ^mia = 0.25 nm. 

While the BER in each channel is much less than IO-30, the channel spacing 

of 0.25 nm may be restrictive. By doubling the channel spacing to 0.5 nm, 

the jitter increases, but error rates are still well below 10~30, as shown by Ta- 

ble 5.5. If the channel spacing is doubled once more, so that A = 1.0 nm, 

as in Table 5.6, the BER of 10-6 in channel eight is too high. However, it is 

easily reduced by sliding each wavelength two nanometers closer to the disper- 

sion zero wavelength, as shown in Table 5.7. Since the average value of the 

dispersion coefficient between channels one and eight is D\s = 0.871 ps/nm- 

km, then Lc/La = 2(50)/(0.871)(7)(25) = 0.656, which is very near the peak 

value of AArms for channels one and eight (see Fig. 4.7). While the curves in 

Fig. 5.3 imply that 50 ps soliton channels may occupy a bandwidth no larger 

■than 2 nm, Table 5.7 demonstrates that more flexibility is possible if system 

parameters are chosen properly. 

The restrictions on Amin and Amax in Fig. 5.3 only permit wavelength 

Table 5.4. Jitter and BER in eight 50 ps channels with channel spacing 0.25 nm 
and L = 10000 km. 

Wavelength 

Ap (nm) 

Dispersion 

D (ps/nm-km) 

Standard deviation 

((A*2)p)1/2 (ps) 

BERp 

Ai = 1549.125 0.94 0.085 < lO"30 

A2 = 1549.375 0.96 0.019 < 10"30 

A3 = 1549.625 0.97 0.002 < 10"30 

A4 = 1549.875 0.99 0.000 < io-30 

A5 = 1550.125 1.01 0.000 < io-30 

A6 = 1550.375 1.03 0.001 < 10"30 

A7 = 1550.625 1.04 0.015 < io-30 

A8 = 1550.875 1.06 0.085 < io-30 
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Table 5.5.  Jitter and BER in eight 50 ps channels with channel spacing A 
and L = 1000C km. 
Wavelength 

Ap (nm) 

Dispersion 

D (ps/nm-km) 

Standard deviation 

((A*2)p)1/2 (ps) 

BERp 

Ai = 1548.25 0.88 4.86 < lO"30 

A2 = 1548.75 0.92 2.97 < lO"30 

A3 = 1549.25 0.95 1.40 < lO"30 

A4 = 1549.75 0.98 0.405 <10"3° 
A5 = 1550.25 1.02 0.158 < lO"30 

A6 = 1550.75 1.05 0.860 < 10"30 

A7 = 1551.25 1.08 2.52 < 10"30 

A8 = 1551.75 1.12 5.24 < lO"30 

Table 5.6.  Jitter and BER in eight 50 ps channels with channel spacing A = 
and L = 1000 3 km. 
Wavelength 

Ap (nm) 

Dispersion 

D (ps/nm-km) 

Standard deviation 

((A*2)p)1/2 (ps) 

BERp 

Ai = 1546.5 0.76 15.2 lO"11 

A2 = 1547.5 0.83 14.2 lO"12 

A3 = 1548.5 0.90 12.3 10-i6 

A4 = 1549.5 0.97 9.29 10-26 

A5 = 1550.5 1.03 6.44 < 10"30 

A6 = 1551.5 1.10 8.79 10-29 

A7 = 1552.5 1.17 14.2 lO"12 

A8 = 1553.5 1.24 20.0 10"6 

Table 5.7. Jitter and BER in eight 50 ps channels with channel spacing A 
1.0 nm and a center wavelength of 1548 nm. 

Wavelength 

Ap (nm) 

Dispersion 

D (ps/nm-km) 

Standard deviation 

((A*
2

>P)
1/2

 (Ps) 

BERp 

Ai = 1544.5 0.63 9.96 10-23 

A2 = 1545.5 0.70 9.14 lO"27 

A3 = 1546.5 0.77 7.61 < 10"30 

A4 = 1547.5 0.83 5.30 < io-30 

A5 = 1548.5 0.90 2.99 < IO"30 

A6 = 1549.5 0.97 4.58 < io-30 

A7 = 1550.5 1.03 8.62 < IO"30 

A8 = 1551.5 1.10 13.3 IO"13 
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multiplexing of two soliton channels for pulse widths greater than 18 ps. This 

appears to be accurate if the fiber dispersion is D = 1 ps/nm-km, the length is 

10000 km, and the required BER is 10-12, as shown by Fig. 5.14. However, for 

shorter or less dispersive fibers (or if a higher BER is permitted), the minimum 

pulse width decreases. As an example, the minimum pulse width allowed in a 

WDM system 1000 km long with dispersion of 0.5 ps/nm-km is less than 10 ps. 

Further reductions are also possible if amplifiers are spaced closer together, as 

illustrated by the dashed curve for L = 100 km and La = 25 km — a fact 

that is especially useful if wavelength multiplexing were used to transmit very 

narrow solitons over shorter distances. 

30 1       '       '       '       '       I       ' i       i       ,       |       ,       i       i 
 (  

25 
- 

BER =  10"12 - 

L =  10000 km^-^-" - La — 25 km 
w a. 
~ 20 La = 12.5 km  - 

a - 

s - 

ii5 ^~^^^l = 1000 km - 

L = 100 km 
~ 

a  10 
s 

5 

-s^ 

_. — " ~~ 

  -~_ I 

i  
 i 

  
1  

 i 
  

i  
 i 

ii 
  

1 

0  1 —  i       ,       ,       ,       ,       i       . 

0.5 1.0 1.5 
Dispersion coefficient D (ps/nm-km) 

2.0 

Figure 5.14. Minimum FWHM necessary to transmit WDM solitons across 
the specified distance. The dashed curve corresponds to L = 100 km and 
La = 12.5 km. 
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Finally, using Eq. (5.27), we can determine the maximum length of 

any system for a given BER. As an example, if the BER must be less than 

10~9, we require 

'rr2 

£) * <-'>> 
>   ^ ,   ~   ,    ,   .    ,    (AA2)P9 £W   UJ 

q¥p 

N 

>   £ (lÖ„f (f) ^ (5.29, 
1*p 

L ^ —i=~.—       vi/8. (5-3°) 

for all values of p.   By replacing T with 5r and solving for L, the maximum 

system length is given by 

2.72 rr2/3 

maxp (E,^p PP,)
3 APq (AA2)pg)

] 

so that i is limited by the channel in which the jitter is largest. 

Using the parameter values listed at the beginning of this section, 

the solid curves in Fig. 5.15 illustrate the maximum length that is possible 

for various pulse widths and the specified numbers of channels N. If the 

required BER is 10~12 or if the receiver sensitivity requires r = 0.2, lengths in 

Fig. 5.15 are reduced by 10% and 37%, respectively. With adjacent wavelengths 

separated by Am;n, the channel spacings vary from A = 0.625 nm at r = 20 ps 

to A = 0.25 nm at r = 50 ps. If either the channel spacing A, the amplifier 

spacing La, or the dispersion D decreases, the ratio Lc/La increases, so that 

wavelength shifts are smaller, allowing system lengths to be longer. 

The maximum length which insures both a 10~9 BER and Lc/La > 2 

in each channel is depicted by the dashed line. Hence, when Lc/La > 2, WDM 

soliton transmission is error-free up to a distance of 20000 km for r = 20 ps and 

to longer distances when r is greater than 20 ps. However, the number of 20 ps 
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Figure 5.15. Maximum system length with N channels at a 10~9 BER as 
limited by collision-induced timing displacements. The dashed curve illustrates 
the maximum length possible if all channels meet the condition that Lc/La > 
2 and the dotted curve indicates the maximum system length as limited by 
Gordon-Haus jitter. 

channels is limited to two and the number of 50 ps channels is limited to eight, 

as shown previously in Fig. 5.4. If Lc/La is less than two, then the system must 

be shorter, but more channels are possible. For instance, with 40 ps solitons in a 

system 2500 km in length, 32 WDM channels — requiring a 31(0.315) = 10 nm 

bandwidth — are theoretically possible. Since Lc/La = 2(40)/l(10)(25) =0.32 

between channels 1 and 32, the minimum value of Lc/La achieved in such a 

system is much less than the current limit of two. 

To compare the effects of collision-induced jitter to Gordon-Haus 

jitter[22], we assume the single channel length limits due to the Gordon-Haus 
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effect are the same in each WDM channel. Recall from Chapter 1 that Gordon- 

Haus jitter arises from amplified spontaneous emission noise. Using previ- 

ous system parameters, a maximum bit-rate-length product RL of 60 GHz- 

Mm is depicted by the dotted line of Fig. 5.15, as derived from [22] using 

(RL)3 < 0.1372Tr2Aeft/(han,2DT). The nonlinear coefficient and the effective 

area of the fiber core are given by n2 = 3.2 x 10~16 cm2/W and Aea = 50 /im2, 

respectively, and h is Planck's constant. With many wavelength channels or 

high data rates, we see from Fig. 5.15 that the length will probably be limited 

by WDM soliton collision-induced jitter. Gordon-Haus jitter is more likely to 

limit the length of systems with fewer channels and lower data rates. In a 

recent WDM soliton experiment[76] using 60 ps solitons, eight 2.5 Gb/s chan- 

nels were transmitted 10 Mm with error rates below 10~10. The channels were 

densely multiplexed with A = 0.2 nm in order to insure Lc/La > 2, thus 

reducing collision-induced jitter. Figure 5.15 indicates, though, that this sys- 

tem is more likely limited by Gordon-Haus jitter, since the length as limited 

by collision-induced jitter is well over 106 km (as found by extrapolating the 

curve with N = 8 to r = 60 ps). Although collision-induced jitter increases 

if A is larger (since collision lengths Lc are shorter), estimates of jitter using 

Eq. (5.27) indicate that much larger channel spacings would be feasible be- 

fore collision-induced jitter would impact such a system. Simply put, it was 

unnecessary in the experiment in [76] to multiplex the channels so densely. 

For a given system length, Fig. 5.15 can also be used to predict the 

number of channels N possible at each pulse width and data rate. The results 

are shown in Fig. 5.16 for system lengths of L = 2500, 5000, and 10000 km. 

In a fiber 2500 km in length with r = 50 ps, 89 channels in an 88(0.25) = 
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Figure 5.16. Maximum number of channels possible to maintain a BER of 10~9 

at each length. 

22 nm bandwidth are possible before collision-induced timing jitter degrades 

the system. In contrast, only two channels are possible if the pulse width is 

20 ps and the system length is 10000 km. There are discontinuities in each 

curve since only integral values of N are possible, as was true in Fig. 5.4. 

Aggregate throughput, predicted by multiplying the maximum num- 

ber of channels N by the data rate R, is plotted in Fig. 5.17. The dashed 

curve corresponds to the plot in Fig. 5.5, insuring that Lc/La > 2. Intu- 

itively, one might expect the throughput in Fig. 5.17 to increase as the data 

rate per channel increases, but these results show the opposite. As the data 

rate R increases, the number of collisions and the magnitude of the wavelength 

shifts increase substantially for fixed L, so the number of channels iV decreases 

rapidly.  Thus, the fundamental limit on throughput due to collision-induced 
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Figure 5.17. Maximum throughput in a WDM soliton system for various 
lengths. 

velocity shifts is less restrictive using many slower (and cheaper) channels. For 

the previous example with r = 50 ps and L = 2500 km, the data rate in 

each channel is 4 Gb/s, so the aggregate throughput with 89 WDM channels 

is 89 x 4 = 356 Gb/s. 

While these results suggest that more extensive WDM using solitons 

is preferable to other alternatives for achieving high aggregate throughput, it 

is unlikely that 356 Gb/s of data can actually be transmitted over a distance of 

2500 km. Practical limitations might include fiber nonlinearities, as discussed 

in Section 4.3, or other amplifier effects. The gain, for instance, is not constant 

across the full bandwidth of an EDFA; different channels might experience more 

gain than others[78], violating the requirement in Fig. 4.1 that the average pulse 
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energy correspond to the fundamental soliton energy. There is also the problem 

of cross-saturation[2], whereby the gain of one channel saturates because of the 

aggregate power in other channels. If data is encoded in an amplitude-shift 

keyed format, the gain may fluctuate from one bit to the next, degrading 

signal-to-noise ratios. 

The effect of filters[28, 32] on the system is also of great interest. 

Figure 5.17 implies that there is little to gain in a WDM soliton system simply 

by increasing the data rate of individual channels. However, if filters change 

the slope of the curves in Fig. 5.17, so that higher aggregate throughput results 

by using higher data rates, then it is reasonable to use pulse widths as short 

as possible. If filters only flatten the throughput curves, it is more reasonable 

to use slower, less expensive channels. These issues are influenced by many 

factors, such as filter design constraints, or by the soliton spectral width and 

WDM channel spacings that are required. The ultimate limits on WDM soliton 

systems will not be determined until such issues are resolved. 



CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The primary goals of this thesis, as stated at the outset, are: 

1. To understand how WDM solitons, encoded on an arbitrary number 

of wavelength channels, interact during collisions in an optical fiber. 

2. To determine the impact that collision-induced frequency and timing 

shifts have on communication in WDM soliton systems. 

The first of these objectives was emphasized in Chapters 3 and 4, while the 

second was discussed in Chapter 5. In this chapter, we make more general 

observations, summarizing the previous results and speculating how WDM 

soliton systems will be impacted by effects other than soliton collisions. We 

conclude by suggesting areas for further research. 

6.1     General observations regarding WDM soliton systems 

Collisions are inevitable in a WDM soliton system because of chro- 

matic dispersion. The overall interaction during a collision consists of a tempo- 

rary wavelength shift (which always occurs, whether the fiber is lossless or not) 

and possibly a permanent wavelength shift if the interaction is perturbed — by 

loss and amplification, for instance. Interactions between an arbitrary number 

of wavelength channels are desribed by linearly summing the pairwise effects 

of each two-soliton interaction. This is already known to be true for temporal 

displacements at soliton collisions[36]; Chapter 3 demonstrates that it is true 

in the spectral domain as well (if adjacent channels are widely separated). 
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Temporary velocity shifts have no significant effect on data commu- 

nication under certain conditions. First, if adjacent wavelength channels are 

separated by at least five soliton spectral widths, frequency shifts during col- 

lisions at the fiber output will be very small. Furthermore, the number of bit 

periods between adjacent solitons (as defined by p) must not be too large, or 

jitter caused by the temporary velocity shifts during collisions near either end 

of the fiber may significantly increase bit-error-rates. 

Soliton interactions are more important in systems with loss and am- 

plification or if collisions occur at the input to the fiber, since permanent shifts 

in the soliton frequencies and velocities can cause unpredictable displacements 

in pulse arrival times at the fiber output. If the displacements are too large, 

intersymbol interference may occur between adjacent bit slots. By themselves, 

though, permanent or residual wavelength shifts do not cause intersymbol in- 

terference — the jitter is ultimately data dependent. As an example, if each 

bit slot is encoded as a one, a continuous train of solitons is transmitted in each 

channel. Although pulse arrival times are displaced by collisions, all solitons 

shift by the same amount (since A6j = 0 for all j), so there is no interference at 

the fiber output. Jitter, or variance in the pulse arrival times, results because 

data is being transmitted across the fiber; a fraction of the bit slots are empty, 

so adjacent solitons may shift by different amounts, with some probability of 

interference at the fiber output. 

The magnitude of collision-induced soliton jitter is a function of many 

system parameters. They are summarized as follows: 

• Permanent velocity and wavelength shifts are fundamentally related 

to the ratio of the collision length to amplifier spacing Lc/La.   The 
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shifts become smaller as this ratio becomes larger, since the effects of 

loss and amplification path-average when collisions occur over multiple 

amplifiers. Consequently, to reduce timing jitter, it is typical to restrict 

Lc/La to values greater than two. While this limits the use of WDM in 

soliton systems, the results of Chapter 5 show that such a requirement 

is more restrictive than necessary, since the jitter varies significantly 

with other system parameters as well. 

It is clear that jitter is reduced if the amplifier spacing La is smaller, 

since Lc/La will be larger. Smaller amplifier spacings generally stabilize 

soliton systems, reducing both ASE noise (the cause of Gordon-Haus 

jitter) and chaotic fluctuations in soliton energy that result when pulse 

widths are narrower and soliton periods are shorter. Of course, the 

system is more expensive since more amplifiers are required. 

The system length L strongly influences the performance that is possi- 

ble in a WDM soliton system, since the variance in pulse arrival times 

is dependent on L3. The stipulation that Lc/La be greater than two 

ignores the issue of system length; Lc/La may be less than two in many 

systems if L is smaller than 10000 km. 

As the dispersion D is decreased, the collision lengths Lc are larger, so 

the jitter becomes smaller. Less dispersive fibers are generally helpful 

in soliton systems, reducing the peak power of the solitons as well as 

Gordon-Haus jitter. Hence, soliton propagation nearly always occurs 

in dispersion shifted fibers. However, fibers with low dispersion can 

be harmful in a WDM system since four-wave mixing is more efficient 

in less dispersive fibers. The system is also sensitive to the dispersion 
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variation between different fibers, which may be treated as a perturba- 

tion in the same manner as loss and amplification. Although fibers may 

be selected carefully to minimize dispersion variations, such an option 

is more expensive. The use of dispersion-decreasing fibers could be an 

interesting way of reducing the negative effects of amplifiers[62]. 

• Reducing the channel spacing A helps to reduce jitter since the collision 

length increases if the relative group velocities (and thus the channel 

spacing) are as close as possible. While temporary effects of collisions 

increase as A decreases, more analysis is required to determine how the 

variance in soliton frequencies and arrival times are impacted. 

• Jitter is less severe if the data rate R decreases (or the bit period 

T = 1/R increases) while the pulse width r is held constant, since 

fewer collisions occur if the solitons in each channel are farther apart. 

However, the variance of pulse arrival times is only linear in R (see 

Eq. (5.29)), while it decreases exponentially with increasing pulse width 

(since (AA2) oc 1/r6), so the pulse width influences the jitter much 

more strongly than does the bit period T. In some respects, this implies 

that it might be best to increase data rates by allowing T < 5r. This 

might be possible in shorter systems, since adjacent pulse interactions 

are less severe if L is smaller. 

• The tolerance r of the receiver is an important parameter that ulti- 

mately determines the performance of the system. We have attempted 

to assume reasonable values for r in our predictions of system perfor- 

mance. More must be known about soliton receivers before precise 

values of r can be determined. 
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• The parameter that is easiest to change to improve system performance 

is the pulse width r. The number of collisions in a given length of fiber 

decreases at slower data rates, and since wavelength shifts are propor- 

tional to 1/r3, increasing r reduces jitter significantly. (The system 

is also less sensitive to Gordon-Haus jitter if T is larger[ll, 22]). Fur- 

thermore, collision lengths increase as r increases, so more flexibility 

is available in choosing the wavelengths of individual channels. As 

demonstrated in Chapter 5, the aggregate capacity of WDM soliton 

systems is optimized by using as many slower channels as possible. 

6.2     Other factors affecting WDM soliton communication 

As determined in Chapter 5, only two or three WDM channels are 

possible as pulse widths become narrower and data rates are made higher. 

Given this fact, collision-induced timing jitter is probably the effect which 

fundamentally limits such systems. To improve system performance, r should 

be increased, so the channel data rates decrease while the number of channels 

are increased. Since aggregate throughput is higher, there are few drawbacks 

to using slower data rates in each channel. As data rates decrease, though, 

other factors besides collision-induced timing jitter, such as amplifier effects or 

nonlinearities, probably limit the number of channels in the system. Here we 

simply predict which effects will be dominant in WDM soliton systems. 

While collision-induced timing jitter may be the limiting factor in a 

system with high data rates, ASE noise and Gordon-Haus jitter may be more 

significant in a system with lower data rates. Collision-induced timing jitter 

and Gordon-Haus timing jitter have the same L3 dependence on system length, 

but the pulse width r affects each differently.   Gordon-Haus jitter decreases 
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less rapidly as r increases than does collision-induced jitter (the Gordon-Haus 

variance in pulse arrival times[ll] is dependent on 1/r while the collision- 

induced variance is dependent on 1/r6), so with larger pulse widths, Gordon- 

Haus may dominate, as in Fig. 5.15 with lower values of N. Other amplifier 

effects, such as cross-saturation, may act to limit the number of wavelength 

channels, since the power in the fiber increases as more channels are added. 

The effect of nonlinearities (SRS, SBS, FWM) on WDM soliton sys- 

tems is somewhat difficult to assess at this time without empirical observations 

in systems using more extensive WDM. Preliminary results seem to imply that 

in practical systems — ones with pulse widths greater than 20 ps — FWM 

is probably the dominant nonlinear process. It might easily limit a soliton 

system having lower data rates, since the channel spacings are smaller in such 

systems. By carrying out the asymptotic expansion in Chapter 3 to higher 

orders, it may be possible to quantitatively estimate FWM effects in a system 

having an arbitrary number of channels. With pulse widths around 20 ps or 

less, the channel spacings are larger, so the FWM process is less efficient. Since 

the peak power of such solitons is near the Brillouin threshold, spontaneous 

Brillouin scattering may be the dominant process, especially for pulse widths 

between 1 and 20 ps. (SRS is unlikely to affect such systems since only a few 

channels are possible given the results of Chapter 5.) For pulse widths below 

1 ps, Raman gain (the soliton self-frequency shift) and higher order dispersion 

affect any soliton system, including a WDM system. 

6.3    Areas for further research 

• Filtering is perhaps the area of research that holds the most promise 

for reducing the effects of WDM soliton interactions.    While filters 
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have not yet been used in any soliton system with greater than two 

channels, Fabry-Perot filters are likely to be used in systems with ex- 

tensive wavelength multiplexing[32]. It may be possible to predict the 

extent to which jitter is reduced in filtered systems by modifying the 

derivation in Chapter 5. 

• While permanent wavelength shifts have been observed in systems with 

loss and amplification[63], the magnitudes of the shifts, as predicted 

by the theory in Chapter 4, have not been verified. If further empirical 

and theoretical results indicate that the permanent shifts are different 

than predicted, the derivation of timing jitter in Chapter 5 is still 

applicable as long as the variance in the wavelength shifts (AA2) can 

be determined. 

• It would be helpful to experimentally verify the predictions in Chap- 

ter 5. This would require a significant amount of equipment, including 

such things as multi-wavelength soliton sources and BER testers. The 

results with two channels have already been verified numerically in [70]. 

• The derivation in Chapter 5 does not include jitter in pulse arrival 

times caused by collisions at the fiber input, as discussed in Chapter 4. 

Although such collisions may be avoided in practice, the results in 

Chapter 5 could be more general with inclusion of these effects. 

• The jitter in bit-per-wavelength soliton systems could be predicted by 

modifying the estimates of jitter in Chapter 5. Preliminary studies 

indicate such an encoding technique may be difficult since the average 

shifts in arrival times are substantially different from one wavelength 

channel to the next. 
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• More research is necessary in regards to soliton transmitters and re- 

ceivers. Many related issues, such as data encoding techniques and 

clock extraction, must also be studied before soliton communications 

will be practical. Other modulation schemes in a WDM soliton system 

could be useful. As an example, the use of phase-shift keyed data might 

significantly reduce effects of collision-induced jitter since solitons are 

present in every bit slot (Abj as defined for an amplitude-shift keyed 

system would always be zero). 

• Higher-order soliton propagation might be a useful way of encoding 

multi-valued data in the form of a soliton "packet". While such solitons 

are unstable to slight perturbations, they still present an intriguing 

option for significantly improving performance. 

• The use of solitons for switching applications continues to be an in- 

teresting area of research. Progress in the development of practical 

soliton switches could significantly enhance system performance. 

• Finally, dispersion compensation techniques in linear systems using 

NRZ encoded data continue to improve. A good knowledge of both 

types of systems is necessary to fully understand all the issues relevant 

to optical data communication in fiber. 

The use of WDM for soliton communication is an exciting area of 

research. The improvements in performance that might be achieved by com- 

bining the parallelism of the spectral domain with the advantages of soliton 

transmission are significant. The author hopes that this research is a useful 

starting point for further progress in the use of solitons for optical communi- 

cations and signal processing. 
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APPENDIX A 

MATHEMATICAL DERIVATIONS 

A.l     Frequency shifts during collisions between two solitons 

The mean frequency of any pulse whose evolution is described by a 

function u can be written as 

w = iIm/ßr)"rf<' ^ 
where S is the pulse energy. If the mean frequency varies during propagation, 

we can describe its evolution by taking the derivative with respect to z, as in 

<*<"">--- i   ~    •-'-*. (A.2) = ilm I![{%-)u 
dz 

The energy does not vary in z if the system is lossless. The integrand in (A.2) 

can be rewritten as 

d  (du*   \      du* 8u 8 (du*\ ,      N 

Tz{-dru) = ^rTz+udi{-dz-)- (A-3) 

If u>u varies because of cross-phase modulation with a second pulse v, the 

coupled NLSE in Eqs. (3.4) and (3.5) can be used to substitute for du/dz and 

du*/dz in (A.3). Upon simplification, 

d  (du*  \      idu*d2u      id3u* .(d\u\2       d\v\2\ ,   ,2 ,      x 

Tz {-mu) = 2-mW-2'Wu-i{JdT + 2^T j|u| •      ^ 
If the pulse envelope |u| is symmetric and is multiplied by some phase factor, 

integrating the first three terms and taking the imaginary part yields zero 

(since the integral of an even function times an odd function is zero). Thus, 

d(uu) 2   fd\v\2.   2 2   fd\ 

dz 
I     /"Cur I     12  ,, Z     [ 0\U\\    ,2  , /A    rx 
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By replacing u with v, the variation in the frequency of v is given by 

d(uv)      2  fd\v\2 

dz 

2   r ö\vr,   .. 
dt, 

so that 

d(iov) d(uu) 

(A.6) 

(A.7) 
dz dz 

If u and v are solitons, and their evolution is described by Eqs. (3.1) 

and (3.2), then the shift in the frequency €tu is given by Eq. (3.9), and 

6QU = — I sech2(< + Oz)sech2(i) dt. (A.8) 

Through the use of trigonometric identities and the integral relation, 

/ 

2dx 2a 

(cosx + a)2 (a2-l)3/2 

sinx 

x tan -l 1\1/2 

a + 1 
tan(x/2) 

(a2 — l)(cosx + a)' 

the analytic solution for the frequency shift is given by 

4 ttz cosh(Q,z) — sinh(fiz) 

(A.9) 

8ftu = —8Vtv = 
sinh3(Oz) 

(A.10) 

The shift in the frequency of v is equal in magnitude but opposite in sign to 

the shift in the frequency of u, based on Eq. (A.7). Since a shift in frequency 

corresponds to a shift in velocity, the integral of Eq. (A. 10) yields a timing 

displacement in u. Since d(cothx)/dx = — sinh-2(x) and since 

/ 

x cosh(x] 
dx 

If      dx 

2J  sinh2f sinh3(:c) 2 7  sinh2(:r)      2sinh2(x)' 

it is straightforward to show that the timing shift is given by 

/oo 
8üu{z)dz 

-co 

_    4   f°° ftzcosh(ftz) - sinh(ftz) 

(A.ll) 

Ü sinh3(Qz) 
dZ = W (A.12) 
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A.2     First order effects during iV-soliton collisions 

To describe the interaction between N WDM solitons at a collision, 

the second term of the summation in (3.25) must be determined. This term is 

given by 

j=l j,k=l 

N 

=   — ]P sech(5J)sech(S'fc) x 
j,k=\ 

exp[i(xj + Xk)] Mjk 

1 N 

=    —— ^2 sech(5j)sech(S,A:) x 
2 j,k=l 

exp[z(Xj + X*)] (Mjk + Mkj), (A.13) 

where D and M represent the diagonal and off-diagonal components, respec- 

tively, of the matrix A used to derive the exact N soliton solution in Eq. (3.16). 

The parameters Sj and Xji defined in Eqs. (3.19) and (3.20), describe the spa- 

tial variation and phase of the jth soliton, and gj (z, t) describes the first order 

evolution of the jth soliton. If the frequency separation between adjacent chan- 

nels is ft = e-1, q(j \z, t) is 0(e) since the Mjk are 0(e). If we take the frequency 

separation between the jth and fcth channels to be fij — Qk = (j — k)Q and 

substitute for Mjk and Mkj using Eq. (3.18), 

N N 

J2 ^(^l)    =    - J2 ([sech(5fc) exp(^Xfc) + sech(S,-) exp(tXj)] - 
j=\ y,*=i 

i(j — A:)ri[sech(5,fc)exp(z'xi)tanh(S'j) — 

sech(Sj) exp(zxj) tanh(5jfc)])/ 

[4 + (j-k)2n2]. (A.14) 

We are analyzing interactions only to leading order, so 0(e2) effects can be 

neglected if fi is large, and the first two terms in (A.14) can be dropped, 
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yielding 

TV 
V^   (!)/-    *\ i-^ sech.(Sk)exp(iXk)ta,nh(Sj)-sech(Sj)exp(iXj)t&nh(Sk) 

z(A: -i)n 

N 

sech(5,-)exp(i'xi) I J3 *-1    i - fc (A.15) 

A single term in the summation over j, as in 

<?]•  (z,t) = —2z'esech(S'j)exp(ixj) 
/AT Etanh(5fc) 

i — k 
(A.16) 

**y 

represents the first order correction in space (or time) to the soliton whose 

evolution is described by q^   (z,t) = sech(5j)exp(ixj). 

The spectrum oiqy{z,t) is qy\z,u) = 7rsech[7ra,/2]exp(i<I>j), where 

the $j are defined in Eq. (3.28) and a, = u — Qj. To understand the spectral 

distortion to leading order for an ./V-soliton collision, the Fourier transform of 

qj (z,t) is required. To simplify the analysis, we consider only a single term 

in the summation over k, 

,(i 
<?jfc (M) = -2iesech(5j)exp(ixi) 

tanh(5,i) 

j - k 
(A.17) 

and take its transform, 

fll Lit        f°° 
qK-k\z,ui) — —:  /     sech(5j)exp(ixj)tanh(5,A:)exp(ia;<)^.        (A.18) 

J — K J—oo 

By defining variables S = Sj and Sjk — Sj — Sk = (j — k)£tz — (toj — tok), 

2zeexp(i$j)   r™ ti\                        ZitexDi z*P • I   r00 

q%\z,u)   = . VK    3> /     sech(5)tanh(5-5iit)exp(mi5)d5 
J        /C J—oo 

2ieexp(i$j 

j - k 

where we rename the integral as / 

/, (A.19) 
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By letting y = exp(S') and y0 — exp(Sjk), the integral becomes 

r~2(y2-y2)exp(iajln?/) 

Jo 
-dy. (A.20) 

(2/2 + l)(y2 + y0
2) 

The integrand of / has singularities at y = i, —i, iy0, —iy0, so / can be rewritten 

as an integral over a contour in the upper-half of the complex plane, so that 

2ici 

exp(—notj) + 1 

where the residues at i and iy0 are given by 

2(1 + yl) 

(Ri  +  Riyo), 

R; 

R 
-4j/o 

tyo 

exp(-7raJ/2) 

exp(ia>jSjk — Taj/2). 

(A.21) 

(A.22) 

(A.23) 
m-y2o) 

The factor of exp(—TTCXJ) in the denominator of / acts to translate the negative 

real axis in the contour to the positive real axis, since the limits of integration 

in Eq. (A.20) are taken only from 0 to oo. Substituting for .ft,-, -R,Vo, y and y0, 

the integral becomes 

/ = 7rsech(7ro:j/2) 
isin(ajSjk)      cos(ajSjk) — cosh(Sjk) 

smh(Sjk)     ' sinh(S'jfc) 

Near the center of the collision, Sjk —► 0, so 

smiajSjk) 
I = i7rsech(7TQj/2) 

and 

;(i) <nk'(z,bj) = 27resech(7raj/2) exp(z$j) 

sinh(5jfc) 

s'm(ajSjk) 

z(°)t Thus, the correction factor to q^   (z,u) is 

(j - k) sinh(S'jfc) 

N 

(A.24) 

(A.25) 

(A.26) 

<jj   (z,u)    =    27resech(7ra!j/2)exp(z$j)    ]T] 
s'm(ajSjk) 

k=l (i - k) sinh(5,-jb) 

N 

2t$\z,u>)    £- 
fc=i (i - k) sinh(5,-jfc) 
k*3 

(A.27) 
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A.3    Products of independent random variables 

In order to predict the effects of collisions on bit error rates in WDM 

soliton systems, we must know the mean (At) and the variance (At2) of the 

timing displacement in Eq. (5.13). If the wavelength shifts AAj were the same 

at each collision, the statistical distribution of At would be identical to that of 

the Wilcoxon signed-rank test, common in nonparametric statistics[115]. How- 

ever, since the positions at which soliton collisions occur are random variables, 

independent of any perturbation, the wavelength shifts AAj are random, and 

the relative skew at the end of the fiber is a sum of the products of two ran- 

dom variables, Abj and AAj, where Abj represents a difference between two 

bit values in the fiber. 

If we recognize that these two variables are independent and for clarity 

represent the wavelength shift by a random process X, the difference between 

bit values as Y, and the product as Z, then the probability density function of 

Z = XY is[113] 

Mz) = Iv\fx{y) fy{y)dy' (A-28) 

where the density functions of X and Y are fx{x) and /y(j/), respectively. 

All integrals here are taken over {—oo,oo}. If data is random and uniformly 

distributed, Abj equals zero with probability 1/2, or ±1, each with probability 

1/4, such that the density function of Y may be written as a sum of impulse 

functions, as in 

My) = I <%) + \*(y-V + \ % +1). (A.2'9) 

where each impulse function has unit area.    Substituting Eq.  (A.29) into 
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Eq. (A.28) yields the density function of Z, 

/*(*) = \ S(z) + \ fx(z) + \ fx(-z). (A.30) 

The last two terms in (A.30) are apparent given Eq. (A.28), while the impulse 

in z is less obvious. A standard definition[104] of an impulse function is 

*M = lim*fM, (A.31) 
V-0      \y\ 

where the function g must have unit area and be bounded in the z direction. 

(Oftentimes, g is simply a rectangular or Gaussian pulse.) Hence, the impulse 

in z from Eq. (A.30) results from the fact that 

8{z)   =    f~fx(-) 8{y)dy 
J \y\     \y) 

=   limM^1, (A.32) 
v-°    \y\ 

where we know the area of the density function fx has unit area and assume 

that it is bounded in z. 

Since the mean of the random variable X is 

mx = I xfx(x)dx, (A.33) 

it is relatively straightforward to show that the mean value mz is zero using 

mz   =   Jzfz{z)dz 

-I- l\Kz) + \fx(z)+l-fx(-z) z 

mx      mx 

dz 

4 4 

=   0. (A.34) 

Consequently, the variance is given by 

az   =   j{z -mzf fz{z)dz 
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/ 
fi6(z) + \fx{z) + ±fx(-z) dz 

m2x      rn2x 
4 4 

m2x (A.35) 

where the quantity m2x is the second moment of the random variable X about 

the origin. Since the second moment about the origin is defined as 

m2X = m2
x + ax, (A.36) 

the variance in z is 

2 _ m2
x + ax 

TZ — 7, : (A.37) 

such that a\ is simply half of the second moment of X about the origin. 

Substituting for X and Z, the variance of the product AbjAXj is given by 

((A&iAA,-) 2V      (AA)2 + (AA2) 
(A.38) 

where (AA) and (AA2) are the mean and variance of the wavelength shifts AAj. 



APPENDIX B 

PROGRAM LISTINGS 

Program listings are included in this appendix as follows: 

3solidl.c, 3solmath.c — computes the exact three-soliton solution in Eq. (3.16) 

in space and in frequency. Output data is formatted for use in either IDL 

or Mathematica . 

fpkfnd.ma, spkfnd.ma — computes position and shift of each frequency and 

spatial peak in Mathematica. 

jitter.c, length.c, thrput.c — computes jitter, system length and throughput 

for various system parameters. 

B.l    Numerical three-soliton solution to NLSE 

B.l.l     IDL compatible version      This version is to be used for 

plotting with IDL graphics. 

3solidl.c - 

C program for computing the exact waveform describing soliton 
propagation in fiber - based upon the exact three soliton 
solution to the NLS equation - and for computing the spectrum 
of the waveform using a standard FFT routine. 

VARIABLES, USES, and UNITS: 
points - number of complex elements in variation coordinate 
xwindow - full length of time axis 

FIELD VARIABLES: 
(u_t) - coordinate space variable 
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#include <stdio.h> 
#include <math.h> 

#ifndef TOOLS_C 
#include "tools.c" 

#endif 

#ifndef DEFS.H 
#include "defs.h" 
#endif 

#ifndef TYPES.H 
#include "types.h" 
#endif 

#ifndef COMPLEX.H 
#include "complex.h" 
#endif 

#ifndef CQMPLEX_C 
#include "complex.c" 
#endif 

#ifndef DF0UR1.C 
#include "dfourl.c" 
#endif 

/* important parameters for run */ 
#define points 1024     /* pts computed at each x step */ 
#define xwindow (100.0) /* width of spatial window   */ 
#define init_t (0.25)   /* initial time */ 
#define final.t (0.75)  /* final time */ 
#define solitons 3      /* solution for 3 solitons    */ 

/* this should never change - */ 
/* unless N-soliton solution  */ 
/* is used at later date      */ 

#define num_steps 50    /* time steps */ 

/* array variables */ 
dcomplex   u_t[points]; /* total field */ 

dcomplex   u_l[points]; /* 1st component of field */ 
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dcomplex u_2[points];  /* 2nd component of field */ 
dcomplex u_12[points];/* lst+2nd component of field */ 
dcomplex u_3[points];  /* 3rd component of field */ 
int myi_p[points];    /* VP's position in array */ 
double x_p[points]; /* VP's transverse coord */ 
double s_cnst[4]; 
double chi_cnst [4]; 
dcomplex cden[4][4]; 
double s[4]; 
double chi[4]; 
dcomplex lninvgam[4]; 
dcomplex invgam[4]; 
dcomplex gamconj[4]; 
double rfac[4]; 
dcomplex c[4][4]; 
double sol_pos[4]; 
double sol_omg[4]; 
double sol_phase[4]; 
double sol_amp[4]; 

/* serial variables */ 
int 
double 
dcomplex 
dcomplex 
dcomplex 
dcomplex 
dcomplex 
FILE 
FILE 
FILE 

char 
char 

main() 

num_solitons; 
time; 
u_tden; 
u_tnuml; 
u_tnum2; 
u_tnum; 
zero; 
*spacfile, *freqfile; 
*spacfilel, *spacfile2, *spacfile3; 
*freqfilel, *freqfile2, *freqfile3; 

/* FE arrays for output */ 
buffer[MAXLINE+1];/* buffer for input strings */ 
filename[MAXLINE+l];/* output file name */ 

int n; /* for counting array positions */ 
int j; /* for counting solitons */ 
int i; /* for counting solitons */ 
int k; /* for counting time steps and loading files */ 
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printf("Scaling processor transverse coordinates\n"); 

for (n=0;n<points;n++) { 
myi_p[n] = n; 
x_p[n]  =  (double)  xwindow*(myi_p[n]-points/2)/points; 

} 

/* Initialize omegas in ascending order -  if only two solitons 
are wanted,  set sol_amp[3]=0.0    */ 

printf("Initializing input waveform.\n"); 
sol_pos[l]  = 5.0; 
sol_omg[l]  = -10.0; 
sol_phase[l]  = 2.0*M_PI*(0.0/1000.0); 
sol_amp[l]  = 1.0; 

sol_pos[2]  = -5.0; 
sol_omg[2]  =0.0; 
sol_phase[2]  = 2.0*M_PI*(0.0/1000 .0); 
sol_amp[2]  = 1.0; 

sol_pos[3]  =  10.0; 
sol_omg[3]   =  10.0; 
sol_phase[3]  = 2.0*M_PI*(0.0/1000 .0); 
sol_amp[3]   =  1.0; 

if (sol_amp[3] == 0.0) { 
num_solitons = solitons - 1; 

} else { 
num_solitons = solitons; 

} 

printf("Input filename for space data storage : "); 
getline(buffer,MAXLINE,stdin); 
(void) strncpy(filename,buffer,strlen(buffer)-l); 
printf("Opening space data storage file\n"); 
if ((spacfile = fopen(filename,"w")) == (FILE *)NULL) { 

printf( "Can't write to space data file.\n"); 

exit(l); 

} 

printf("Input filename for frequency data storage : "); 
getline(buffer,MAXLINE,stdin); 
(void) strncpy(filename,buffer,strlen(buffer)-l); 
printf("Opening frequency data storage file\n"); 
if ((freqfile = fopen(filename,"w")) == (FILE *)NULL) { 
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printf( "Can't write to frequency data file.\n"); 
exit(l); 

} 

/* Begin while loop through different time steps */ 

for (k=0;k<=num_steps;k++) { 
time = (double) init_t + (k * (final_t-init_t)/num_steps); 

/* Set values of terms which are 
constant at all field positions */ 

for  (i=l;i<=solitons;i++)  { 
s_cnst[i]   = 2.0*sol_amp[i]*sol_omg[i]*time 

+ sol_amp[i]*sol_pos[i]; 
chi_cnst[i]  =   (pow(sol_omg[i],2.0)-pow(sol_amp[i],2.0))* 

time+ sol_omg[i]*sol_pos[i]-sol_phase[i]; 
for  (j=l;j<=solitons;j++)  { 

if   (j==i)  { 
cden[i] [j] .r =  1.0; 

cden[i] [j] . i = 0.0; 
} 
else { 

cden[i] [j] .r = sol_amp[i]  + sol_amp[j]; 
cden[i][j].i =  sol_omg[i]   -  sol_omg[j]; 

} 
} 

} 

/* Initialize field */ 

zero.r=0.0; 
zero.i=0.0; 

for (n=0;n<points;n++) { 
u_t[n].r = 0.0; 
u_t[n].i = 0.0; 

> 

/* Start calculation of field at 
each transverse space position */ 
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for  (n=0;n<points;n++)  { 

/* Determine space and phase terms for each field component */ 

for  (j=l;j<=solitons;j++)   { 
s[j]   = sol_amp[j]*x_p[n]  -  s_cnst[j]; 
chi[j]  = sol_omg[j]*x_p[n]   - chi_cnst[j]; 
lninvgam[j] .r = -s[j] ; 
lninvgam[j] .i = -chi[j]; 
invgam[j]  = Cexp(lninvgam[j]); 
gamconj[j]  = Cexp(Rconj g(lninvgam[j])); 

/* if  (j==3) 
rfac[j]   = cosh(s[j]); 

else 
rfac[j]   = cosh(s[j] )/sol_amp[j] ;*/ 

} 

/* Calculate matrix coefficients */ 

for  (i=l;i<=solitons;i++)  { 
for (j=l;j<=solitons;j++)  { 

if  (j==i)  { 
c[i] [j] .r =  cos(chi [i] )*cosh(s[i]) ; 
c[i][j].i = -sin(chi[i] )*cosh(s[i] ) ; 

> 
else 

c[i] [j]  = Cdiv(Cadd(invgam[i] .gamconj [j]) , 
cden[i] [j]) ; 

} 
} 

/* Calculate the field at the space position 

Multiplication by sol_amp[3]   allows program to be generalized 
for 2  soliton collision by setting sol_amp[3]  equal to zero */ 

u_tden = Cadd(RCmul(sol_amp[3], 
Cadd(Cmul(Csub(Cmul(c[l][3], 

c[2][2]), 
RCmul(sol_amp[2], 

Cmul(c[l] [2] , 
c[2][3]))), 
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RCmul(sol_amp[l], 
c[3][i])), 

Cmul(Csub(Cmul(c[l][l], 
c[2][3]), 

RCmul(sol_amp[l], 
CmuKcCl] [3], 

c[2][l]))), 
RCmul(sol_amp[2], 

c[3][2])))), 
Cmul(Csub(RCmul(sol.amp[1]*sol_amp[2], 

Cmul(c[l] [2], 
c[2][l])), 

CmuKcCl] [1] , 
c[2][2])), 

c[3][3])); 

u_l[n]=Cdiv( 
Cadd( 

Cmul( 
RCmul( 

sol_amp[l] , 
c[3][3]), 

Csub( 
RCmul( 

sol_amp[2], 
c[l][2]), 

c[2][2]) 

), 
RCmul( 

sol_amp[3]*sol_amp[1], 
Cadd( 

Cmul( 
RCmul( 

sol_amp[2] , 
c[2][3]), 

Csub( 
c[3][2], 
c[l][2]) 

), 
Cmul( 

c[l][3], 
Csub( 
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c[2][2], 
RCmul( 

sol_amp[2] , 
c[3][2])) 

), 
u_tden 

); 

u_2[n]=Cdiv( 
Cadd( 

Cmul( 
RCmul( 

sol_amp[2] , 
c[3][3]), 

Csub( 
RCmul(sol_amp[l] , 

c[2][l]), 
c[l][l]) 

), 
RCmul( 

sol_amp[3]*sol_amp[2] , 
Cadd( 

Cmul( 
RCmul( 

sol_amp[l] , 
c[l][3]), 

Csub( 
c[3][l], 
c[2][l]) 

), 
Cmul( 

c[2][3], 
Csub( 

c[l][l], 
RCmul( 

sol_amp[l], 
c[3][l])) 

) 
) 
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) 

), 
u_tden 

); 

u_3[n]=Cdiv( 
RCmul( 

sol_amp[l] , 
c[3][l]), 

c[l][l3) 

sol_amp[3], 
Cadd( 

Cmul( 
c[2][2], 
Csub( 

RCmul( 

), 
Cadd( 

Cmul( 

sol_amp[l]*sol_amp[2] , 
c[l][2]), 

c[3][l]) 

sol_amp[2] , 
c[3][2]), 

c[l][l], 
RCmul( 

sol_amp[l], 
c[2][l])) 

), 
u_tden 

); 

RCmul( 

Csub( 
c[2][l], 

). 
Cmul( 

RCmul( 

Csub( 
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u_12[n]  = Cadd(u_l[n],u_2[n]); 

u_t[n]  = Cadd(u_12[n],u_3[n]); 
/* u_t[n]=u_12[n] ;*/ 

} 

/*  Store space and spectral data points */ 

store_time_data(time); 

/* My fft */ 
dfourl(&((double)u_t[0].r)-l.points,-1);  /* FFT */ 

/*dfourl(&((double)u_12[0].r)-l,points,-1); FFT of u_12*/ 
/*dfourl(&((double)u_3[0].r)-l,points,-1);  FFT of u_3*/ 

/* for  (n=0;n<points;n++)  { 
u_t[n]  = Cadd(u_12[n],u_3[n]); 

}*/ 

store_freq_data(time); 

/* End the for loop */ 

} 

printf("Closing Data Files\n"); 
fclose(spacfile); 
fclose(freqfile); 

}■ /*  End of main */ 

store_time_data - 
Subroutine for storing the time and field data 

in a IDL-compatible data file. 
Requires these external variables #defined: 
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points -     number of elements in the array 
The data file must be opened and closed externally. 

*********************************************************/ 

store_time_data( location ) 
double  location; 

{ 
int k; 

printf("time = y.fXn", location); 
for (k=0; k<=(points-l); k++ ) { 

/*      f printf (spacf ile, '7.16 .14f+I*'/.16.14f,", 

u_t[k].r,u_t[k].i );*/ 
f printf (spacf ile,"*/.. 4e " ,Cabs(u_t [k])); 
if ( k'/.4-3 == 0) fprintf(spacfile,"\n " ); 

} 
} /* End of subroutine store_time_data */ 

/********************************************************** 

store_freq_data - 

Subroutine for storing the frequency field data 
in a IDL-compatible data file. 
Requires these external variables #defined: 
points -     number of elements in the array 
The data file must be opened and closed externally. 

**********************************************************/ 

store_freq_data( location ) 
double location; 

{ 
int k; 

for (k=0;k<points/2; k++) { 
/*       fprintf (freqf ile,'7.12 . lOf+I*'/,12. lOf, " , 

u_t[points/2+k].r,u_t[points/2+k].i);*/ 
fprintf (freqf ile, "•/.. 4e " , Cabs (u_t [points/2+k] ) ) ; 

if  ( k'/.4-3 == 0)  fprintf (freqf ile,"\n" ); 
} 
for  (k=points/2;k<=(points-l);  k++)   { 

/* f printf (freqf ile,'7.12.10f+I**/.12.10f,", 
u_t[k-points/2].r,u_t[k-points/2].i);*/ 

fprintf (freqf ile, "'/. .4e " , Cabs (u_t [k-points/2] ) ) ; 
if   (  k'/.4-3 ==  0)   fprintf (freqf ile, "\n "  ); 

} 
}    /* End of  subroutine store_freq_data */ 
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B.1.2 Mathematica compatible version  This version is used 

with Mathematica to compute positions of frequency and spatial peaks. 

3sol.c - 
C program for computxing the exact waveform describing soliton 
propagation in fiber - based upon the exact three soliton 
solution to the NLS equation - and for computing the spectrum 
of the waveform using a standard FFT routine. 

VARIABLES, USES, and UNITS: 
points - number of complex elements in variation coordinate 
xwindow - full length of time axis 

FIELD VARIABLES: 
(u_t) - coordinate space variable 
***********************************************************/ 

#include <stdio.h> 
#include <math.h> 

#ifndef T00LS_C 
#include "tools.c" 
#endif 

#ifndef DEFS.H 
«include "defs.h" 
#endif 

#ifndef TYPES.H 
«include "types.h" 
#endif 

#ifndef COMPLEX.H 
#include "complex.h" 
#endif 

Sifndef COMPLEX.C 
«include "complex.c" 
#endif 
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#ifndef DF0UR1_C 
#include "dfourl.c" 

#endif 

/* important parameters for run */ 

#define points 4096 
«define xwindow (400.0) 

»define init.t (-1.0) 
»define final_t (1.0) 
»define solitons 3 
»define num_steps 100 

/* array 
dcomplex 
dcomplex 
dcomplex 
dcomplex 
int 
double 
double 
double 
dcomplex 
double 
double 
dcomplex 
dcomplex 
dcomplex 
double 
dcomplex 
double 
double 
double 
double 

variables */ 
u_t[points]; 
u_l[points]; 
u_2[points]; 
u_3[points]; 
myi_p[points]; /* VP 
x_p[points]; / 
s_cnst[4]; 
chi_cnst [4]; 
cden[4] [4]; 
s[4]; 
chi[4]; 
lninvgam[4] ; 
invgam[4] ; 
gamconj[4] ; 
rf ac [4] ; 
c[4][4]; 
sol_pos[4]; 
sol_omg[4]; 
sol_phase[4]; 
sol_amp[4] ; 

's position in array */ 
* VP's transverse coord */ 

/* serial variables */ 
int num_solitons; 
double time; 
dcomplex u_tden; 
dcomplex u_tnuml; 
dcomplex u_tnum2; 
dcomplex u_tnum; 
FILE *spacfile,  *freqfile; 
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FILE 
FILE 

char 
char 

*spacfilel, *spacfile2, *spacfile3; 
♦freqfilel, *freqfile2, *freqfile3; 

/* FE arrays for output */ 
buffer[MAXLINE+1];/* buffer for input strings */ 
filename[MAXLINE+1];/* output file name */ 

mainO 

{ 
int 

int 
int 
int 

n; /* for counting array positions */ 
j; /* for counting solitons */ 
i; /* for counting solitons*/ 
k; /* for counting time steps and loading files */ 

printf("Scaling processor transverse coordinates\n"); 
for (n=0;n<points;n++) { 

myi_p[n] = n; 
x_p[n] = (double) xwindow*(myi_p[n]-points/2)/points; 

} 

/* Initialize omegas in ascending order - if only two solitons 
are wanted, set sol_amp[3]=0.0 */ 

printf("Initializing input waveform.\n"); 
sol_pos[l] = 5.0; 
sol_omg[l] = -10.0; 
sol_phase[l]  =  2.0*M_PI*(0 .0/1000 .0); 
sol_amp[l]   =  1.0; 

sol_pos[2]  = -5.0; 
sol_omg[2]  =0.0; 
sol_phase[2]  = 2.0*M_PI*(0.0/1000.0); 
sol_amp[2]  =1.0; 

sol_pos[3]  = 10.0; 
sol_omg[3]   =  10.0; 
sol_phase[3]  = 2.0*M_PI*(0.0/1000.0); 
sol_amp[3]  =  1.0; 

if   (sol_amp[3]  = 
num_solitons 

} else { 
num_solitons 

= 0.0) { 
= solitons - 1; 

= solitons; 

printf("Input filename for space data storage : "); 
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getline(buffer,MAXLINE,stdin); 
(void) strncpy(filename,buffer,strlen(buffer)-l); 
printf("Opening space data storage file\n"); 
if ((spacfile = fopen(filename,"w")) == (FILE *)NULL) { 

printf( "Can't write to space data file.\n"); 
exit(l); 

} 

printf("Input filename for frequency data storage : "); 

getline(buffer,MAXLINE,stdin); 
(void) strncpy(filename,buffer,strlen(buffer)-l); 
printf("Opening frequency data storage file\n"); 
if ((freqfile = f open(f ilename,."w")) == (FILE *)NULL) { 

printf( "Can't write to frequency data file.\n"); 
exit(l) ; 

} 

printf("Writing run parameters to space data file\n"); 
fprintf(spacfile, 

"(* Exact 3-soliton solution - Parameters*)\n"); 
fprintf(spacfile, 
fprintf(spacfile, 
fprintf(spacfile, 
fprintf(spacfile, 
fprintf(spacfile, 
fprintf(spacfile, 
fprintf(spacfile, 
fprintf(spacfile, 
fprintf(spacfile, 
fprintf(spacfile, 
fprintf(spacfile, 
fprintf(spacfile, 
fprintf(spacfile, 

'points = y.d; \n" ,points) ; 
'xwindow = '/.f; \n" .xwindow) ; 
'numsolitons = '/.d; \n" ,num_solitons) ; 
'omegal = '/,f ;\n" ,sol_omg[l] ) 
'omega2 = */.f ;\n" ,sol_omg[2] ) . 
'omega3 = */.f ;\n" ,sol_omg[3] ) 
'initposl = y.f ;\n",sol_pos[l]) ; 
'initpos2 = '/.f ; \n" ,sol_pos[2] ) ; 
'initpos3 = c/.f ;\n" ,sol_pos[3] ) ; 
'initt = */.f ;\n",init_t); 
•finalt = y.f ;\n",final_t); 
'timesteps = '/.d;\n" ,num_steps) ; 
•amplist = {\n"); 

printf("Writing run parameters to frequency data file\n"); 
fprintf(freqfile, 

"(* Exact 3-soliton solution - Parameters*)\n"); 
f printf (freqfile, "points = '/.d;\n" .points); 
f printf (freqfile, "xwindow = °/.f; \n" , xwindow); 
f printf (freqfile, "numsolitons = '/.d; \n" ,num_solitons) ; 
f printf (freqfile, "omegal = */.f ;\n" ,sol_omg[l] ); 

f printf (freqfile, "omega2 = '/.f ;\n" ,sol_omg[2] ); 
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fprintf (freqf ile,"omega3 = °/.f ; \n" , sol_omg[3] ) ; 
fprintf(freqfile,"initposl = */.f ;\n",sol_pos[l] ) 

fprintf (freqf ile,"initpos2 = '/.f ;\n" ,sol_pos[2] ) 
fprintf(freqfile,"initpos3 = '/,f; \n" ,sol_pos[3] ) 
fprintf (freqf ile,"initt = '/.f ;\n" ,init_t) ; 
fprintf (freqf ile, "final t = */.f ;\n" ,f inal_t) ; 
fprintf (freqf ile, "timesteps = '/.d;\n" ,num_steps) ; 

fprintf(freqfile,"freqlist = {\n"); 

/* Begin while loop through different time steps */ 

for (k=0;k<=num_steps;k++) { 

time = (double) init_t + (k * (final_t-init_t)/num_steps); 

/* Set values of terms which are 
constant at all field positions */ 

for  (i=l;i<=solitons;i++)  { 
s_cnst[i]   = 2.O*sol_amp[i]*sol_omg[i]*time + 

sol_amp[i]*sol_pos[i]; 
chi_cnst[i]  =  (pow(sol_omg[i],2.0)- 

pow(sol_amp[i],2.0))*time 
+  sol_omg[i]*sol_pos[i]   -  sol_phase[i]; 

for  (j=l;j<=solitons;j++)  { 
if  (j==i)  { 

cdenCi] [j] .r = 1.0; 
cden[i] [j] . i = 0.0; 

} 
else { 

cden[i] [j] .r = sol_amp[i]  +  sol_amp[j]; 
cden[i][j].i =  sol_omg[i]   -  sol_omg[j]; 

} 
} 

/* Initialize field */ 

for  (n=0;n<points;n++)  { 
u_t[n] .r = 0.0; 
u_t[n].i = 0.0; 

> 
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/* Start calculation of field at each 
transverse space position */ 

for (n=0;n<points;n++) { 

/* Determine space and phase terms for each field component */ 

for  (j=l;j<=solitons;j++)  { 
s[j]  = sol_amp[j]*x_p[n]  -  s_cnst[j]; 
chi[j]   =  sol_omg[j]*x_p[n]   -  chi_cnst[j]; 
IninvgamEj] .r = -s[j]; 
IninvgamEj] . i = -chi[j]; 
invgamCj]  = Cexp(IninvgamEj]); 
gamconj[j]  = Cexp(Rconjg(lninvgam[j])); 
if   (j==3) 

rfacCj]   = cosh(s[j]); 
else 

rfac[j]   = cosh(s[j] )/sol_amp[j] ; 
> 

/* Calculate matrix coefficients */ 

for  (i=l;i<=solitons;i++)  { 
for  (j=l;j<=solitons;j++)  { 

if  (j==i)  { 
c[i][j].r= cos(chi [i] )*rf ac[i] ; 
c[i][j].i = -sin(chi[i])*rfac[i]; 

} 
else 

c[i][j]  = Cdiv(Cadd(invgam[i] , 
gamconj[j]),cden[i][j]); 

} 
} 

/* Calculate the field at the space position 

Multiplication by  sol_amp[3]   allows program to be generalized 
for 2  soliton collision by  setting sol_amp[3]   equal to zero */ 

u_tden = Cadd(RCmul(sol_amp[3], 
Cadd(Cmul(Csub(Cmul(c[l] [3], 

c[2][2]), 
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Cmul(c[l] [2] , 
c[2][3])), 

c[3][l]), 
Cmul(Csub(Cmul(c[l][1], 

c[2][3]), 
CmuKcCl] [3], 

c[2][l])), 
c[3][2]))), 

Cmul(Csub(Cmul(c[l][2], 
c[2][l]), 

CmuKcEl] [1] , 
c[2][2])), 

c[3][3])); 

u_l[n]=Cdiv( 
Cadd( 

Cmul( 
c[3][3], 
Csub(c[l][2],c[2][2]) 

), 
RCmul( 

sol_amp[3], 
Cadd( 

Cmul( 
c[2][3], 
Csub(c[3][2],c[l][2]) 

), 
Cmul( 

c[l][3], 
Csub(c[2][2],c[3][2]) 

) 
) 

), 
u_tden 

); 

u_2[n]=Cdiv( 
Cadd( 

Cmul( 
c[3][3], 
Csub(c[2][l],c[l][l]) 
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), 
RCmul( 

sol_amp[3], 
Cadd( 

Cmul( 
c[l][3], 
Csub(c[3][l],c[2][l]) 

), 
Cmul( 

c[2][3], 
Csub(c[l][l],c[3][l]) 

) 
) 

) 
), 

u_tden 

); 

u_3[n]=Cdiv( 
RCmul( 

sol_amp[3] , 
Cadd( 

Cmul( 
c[2][2], 
Csub(c[3][l],c[l][l]) 

), 
Cadd( 

Cmul( 
c[l][2], 
Csub(c[2][l],c[3][l]) 

), 
Cmul( 

c[3][2], 
Csub(c[l][l],c[2][l]) 

) 
) 

) 
), 

u_tden 

); 

u_t[n]   = Cadd(Cadd(u_l[n],u_2[n]),u_3[n]); 
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/*    u_t[n]=Cdiv(Cadd(u_l[n],u_2[n]),u_tden);*/ 

} 

/* Store space and spectral data points */ 

store_time_data(time); 

/* My fft */ 
dfourl(&((double)u_t[0].r)-l,points,-1); /* FFT */ 

dfourl(&((double)u_l[0].r)-l,points,-1) 
dfourl(&((double)u_2[0].r)-1,points,-1) 
dfourl(&((double)u_3[0].r)-l,points,-1) 

store_freq_data(time); 

/* End the for loop */ 

} 

printf("Closing Data Files\n"); 
fprintf(spacfile,"};\n\n"); 
fclose(spacfile); 
fprintf(freqfile,"};\n\n"); 
fclose(freqfile); 

} /* End of main */ 

store_time_data - 
Subroutine for storing the time and field data 
in a Mathematica-compatible data file. 
Requires these external variables #defined: 
points -     number of elements in the array 
The data file must be opened and closed externally. 

store_time_data( location ) 
double  location; 

{ 
int k; 

printf ("time = '/,f\n", location); 
if (location > init_t) 

fprintf(spacfile,",\n"); 
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fprintf (spacfile,"(* time='/.7.5f *)\n{" .location ); 
for (k=0; k<=(points-2); k++ ) { 

/*      fprintf (spacfile, '7.16 .14f+I**/,16.14f,", 
u_t[k].r,u_t[k].i );*/ 

fprintf (spacfile, '7.16 .14f," ,Cabs (u_t [k] )); 
if ( k*/.4-3 == 0) fprintf (spacfile, "\n " ); 

} 
fprintf (spacfile,*7.16.14f}",Cabs(u_t[(points-l)])); 

} /* End of subroutine store_time_data */ 

store_freq_data - 
Subroutine for storing the frequency field data 
in a Mathematica-compatible data file. 
Requires these external variables #defined: 
points -     number of elements in the array 
The data file must be opened and closed externally. 

store_freq_data( location ) 
double location; 

•c 
int k; 
if (location > init_t) 

fprintf(freqfile,",\n"); 
fprintf(freqfile,"(* time=°/.7.5f *)\n{" ,location ); 
for (k=0;k<points/2;k++) { 

/*       fprintf (freqf ile,'7.12.10f+I**/.12.10f,", 
u_t[points/2 + k].r,u_t[points/2 + k].i);*/ 

fprintf (freqf ile,'7.16.14f,", Cabs (u_t [points/2 + k])); 
if ( k°/.4-3 == 0) fprintf(freqfile,"\n " ); 

} 
for (k=points/2;k<=(points-2);k++) { 

/*       fprintf (f reqf ile, '7.12 . lOf+1*7.12. lOf," , 
u_t[k-points/2].r,u_t[k-points/2].i);*/ 

fprintf (freqf ile, '7.16 .14f," ,Cabs (u_t [k-points/2])); 
if   (  k°/.4-3 == 0)   fprintf (f reqf ile, "\n "  ); 

} 
/* fprintf (freqf ile, '7.12 . lOf+I**/.12 . lOf }" , 

u_t[points/2 -  1].r,u_t[points/2 -  l].i);*/ 
fprintf (freqf ile, "7,16 .14f }" ,Cabs(u_t [points/2-1] )) ; 

}    /* End of  subroutine store_freq_data */ 
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B.2    Peak finding algorithms 

B.2.1 Frequency peaks This program solves for a LaGrange 

polynomial that interpolates the points at the top of each frequency peak and 

them computes the shifts that result at a collision (a spline interpolation could 

be used instead). 

(♦fpkfnd.ma: mathematica file for calculating 
frequency domain separations for colliding 
wavelength-multiplexed solitons.  *) 

(*make absolute value lists from the  space and frequency- 
domain value lists,   amplist and freqlist must be 
two-dimensional arrays of complex field values. 
The dimensions are space and time for amplist, 
frequency and time for freqlist.  *) 

(* Test code for computing Fourier transform of spatial 
data in Mathematica to compare with results from C *) 
(*flist=Array[f,{timesteps+l,points}]; 
iflist=Array[if,{timesteps+1,points}] ; 
freqlist=Array[fl,{timesteps+l,points}]; 
Do[ 

flist[[i]]=Fourier [amplist [ [i]]]; 
iflist[[i]]=Abs[flist[[i]]]; 
Do[ 

freqlist[[i,points/2+l-j]]=iflist[[i,j]]; 
freqlist[[i,points+l-j]]=iflist[[i,j+points/2]], 

{j,1,points/2}], 
{i,1,timesteps+l}]*) 

absamplist = Map[Abs,amplist,{1}]; 
absfreqlist = Map[Abs,freqlist,{l}]; 

peaks=Array[maxpt,{numsolitons}] 
shift=Array[s,{numsolitons,timesteps+l,2}] 
omega=Array[om,{3}] 
pos=Array[p,{3}] 
omega[[l]]=omegal 
omega[[2]]=omega2 
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omega[[3]]=omega3 
om=omega2-omegal 

pos [ [1]]=initpos1 
pos[[2]]=initpos2 
pos[[3]]=initpos3 

(* User input: time step at which to find maxima if 
done manually *) 
(*i = 1;*) 

(* Plot out absamplist[i] and absfreqlist [i] to 
make sure they each have the required two peaks at 
the i-th time step *) 

(*ListPlot[freqlist[[i]], 
PlotRange -> {0,Max[Max[freqlist]]}, 
PlotJoined -> True];*) 

Do[ 

Do[ 
maxval[x_]  = x == Max[absfreqlist [[i]]]; 
highpoint = Select[absfreqlist[[i]],maxval]; 
xlist = Position[absfreqlist[[i]]»highpoint[[1]]]; 
peaks[[k]]=xlist[[1,1]]; 
Do[absfreqlist[[i,xlist[[1,1]]-n]]=0,{n,-20,20,1}], 

{k,l,numsolitons}]; 

peaks=Sort[peaks]; 

Do[ 

For   [j  = l,j<=5,j++, 
x[j]   =   (2*Pi*points/xwindow) 

*(peaks[[k]]-4+j-Length[freqlist[[i]]]/2) 
(* *(peaks[[k]]-3+j-Length[freqlist[[i]]]/2)*) 

/Length[freqlist[[i]]] ; 
y[j]   = freqlist[[i,peaks[[k]]-3+j]]]; 

PI = y[l];  P2 = y[2];   P3 = y[3] ;  P4 = y[4] ;  P5 = y[5] ; 
P12  =   ((x-x[2])Pl  -   (x-x[l])P2)/(x[l]-x[2]); 
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(x-x[2])P3)/(x[2]-x[3]) 
(x-x[3])P4)/(x[3]-x[4]) 
(x-x[4])P5)/(x[4]-x[5]) 
- (x-x[l])P23)/(x[l]-x[3]). 
- (x-x[2])P34)/(x[2]-x[4]) 
- (x-x[3])P45)/(x[3]-x[5]) 

(x-x[l])P234)/(x[l]-x[4]); 
P2345 =   ((x-x[5])P234 -   (x-x[2])P345)/(x[2]-x[5]); 
P12345 =   ((x-x[5])P1234 -   (x-x[lj)P2345)/(x[l]-x[5]); 
deriv=D[P12345,x]; 
a=FindRoot[deriv==0,{x,omega[[k]]}]; 
freq=N[a[[l,2]]]; 

P23 = ((x-x[3])P2 - 
P34 = ((x-x[4])P3 - 
P45 = ((x-x[5])P4 - 
P123 = ((x-x[3])P12 - 
P234 = ((x-x[4])P23 - 
P345 = ((x-x[5])P34 - 
P1234 = ((x-x[4])P123 

omtime=om (initt +  (i-1)   (finalt-initt)/timesteps); 
shift[[k,i]]={N[oratime],N Com/2  (freq-omega[[k]]),10]}, 

{k,2,2}], 

{i,1,timesteps+l}] 
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B.2.2 Spatial peaks This program solves for a LaGrange poly- 

nomial that interpolates the points at the top of each spatial peak and them 

computes the displacement that remains after a collision. 

(♦spkfnd.ma:  mathematica file for calculating space shifts 
for colliding wavelength-multiplexed solitons.  *) 

absamplist = Map[Abs,amplist,{l}]; 
(* User input: time step at which to find maxima *) 
(*i =  1;*) 
peaks=Array[maxpt,{numsolitons}] 
shif t=Array [s ,{numsolitons ,timesteps+l ,2}] 
test=Array[t,{numsolitons,t imesteps+1,2}] 
omega=Array[om,{3}] 
pos=Array[p,{3}] 
omega[[l]]=omegal 
omega[[2]]=omega2 
omega[[3]]=omega3 
om=omega2-omegal 
pos[[l]]=initposl 
pos[[2]]=initpos2 
pos[[3]]=initpos3 
(* 
ListPlot[amplist[[i]] , 

PlotRange -> {0,Max[Max[amplist]]}, 
PlotJoined -> True]; 

*) 
Do[ 

Do[ 
maxval[x_]  = x == Max[absamplist[[i]]]; 
highpoint = Select[absamplistCCi]],maxval]; 
xlist = Position[absamplist[[i]],highpoint[[1]]]; 
peaks[ [k]]=xlist[[1,1]]; 
Do[absamplist[[i,xlist[[1,1]]-n]]=0,{n,-20,20,1}], 

{k,l,numsolitons}]; 

peaks=Sort [peaks]; 
omtime=(2  (i-l)/timesteps -  1)   omegatmax; 

(*       omtime=-10+((-7.5+10)/timesteps)   (i-1);*) 

Do[ 
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xcexp = pos[[k]] + (2 omega[[k]]/om) omtime; 

For   [j   =  1,j<=5,j++, 
x[j]   = xwindow*(peaks[[k]]-4+j- 

Length[amplist[[i]] ] /2) 
/Length[amplist[[i]]] ; 

yCj]   = amplist[[i,peaks[[k]]-3+j]]]; 

PI = y[ll; P2 = y[2];   P3 
P12 = ((x-x[2])Pl -   (x-x 
P23 = (Cx-3 :[3])P2 -   (x-x 
P34 = ((x-3 :[4])P3 -  (x-x 
P45 = (Cx-a :[5])P4 -   (x-x 
P123 = =   ((x- -x[3])P12 -   (x 
P234 = =  ((x- ■x[4])P23 -   (x 
P345 = -   ((x- ■x[5])P34 -   (x 
P1234 = .((a :-x[4])P123 - 
P2345 =  ((a :-x[5])P234 - 
P12345 =  (( x-x[5])P1234 

= y[3];  P4 = y[4];  P5 = y[5]; 
[l])P2)/(x[l]-x[2]) 
[2])P3)/(x[2]-x[3]) 
[3])P4)/(x[3]-x[4]) 
[4])P5)/(x[4]-x[5]) 
-x[l])P23)/(x[l]-x[3]); 
-xC2])P34)/(x[2]-x[4]); 

-x[3])P45)/(x[3]-x[5]) 
(x-x[1])P234)/(x[1]-x [4]); 
(x-x[2])P345)/(x[2]-x[5]); 
-   (x-x[l])P2345)/(x[l]-x[5]); 

deriv=D[P12345,x]; 
a=FindRoot[deriv==0,{x,xcexp}]; 
xc=N[a[[l,2]]]; 
test [[k,i]]={N[omtime],N[xc,10]}; 
shiftCCk,i]]={M[omtime],N[xc - xcexp-.024585522,10]}, 

-Ck,3,immsolitons}] , 

{i,25,timesteps+l}] 
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B.3     System performance computations 

B.3.1 Jitter computations This program computes the vari- 

ance in the relative pulse arrival times of adjacent soli ton pulses in each of N 

wavelength channels. 

/**#******************************************************** 

jitter.c - 
C program for computing the jitter in both arrival time and 
frequency resulting from WDM soliton collisions in a fiber, 
and for computing the maximum system length for various 
values of the pulse width tau to insure BER<10~-9. 
All units are in ps, km, nm unless otherwise specified. 

#include <stdio.h> 
#include <math.h> 

«ifndef T00LS_C 
«include "tools.c" 
#endif 

#ifndef DEFS.H 
#include "defs.h" 
#endif 

/* important parameters for run */ 

#define chnls 4     /* max number of chnls */ 
#define tduty (0.2)  /* duty cycle of temporal pulses */ 
#define wduty (0.2) /* "duty cycle" of spectral pulses */ 
«define La (25.0)   /* amplifier spacing */ 
«define tau (20.0)  /* pulse FWHM */ 
«define alpha (0.048)/* loss coefficient km"(-l) */ 
«define wc (1550.0) /* center wavelength */ 
«define wO (1535.0) /* zero dispersion wavelength */ 
«define sO (2./30.) /* dispersion slope in ps/nnT2-km */ 
«define L (10000.0) /* total link length */ 
«define c (3.0E5)   /* speed of light nm/ps */ 
«define twopi (2.0*M_PI) 
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/* array variables */ 

double w [chnls];       /* channel wavelength */ 
double wvar_[chnls][chnls];/* intermediate variance */ 
double tvar_[chnls];      /* intermediate variance */ 
double tvar [chnls][chnls];/* intermediate variance */ 
double wvar[chnls];/* variance in channel wavelength */ 
double tvar[chnls];    /* variance in arrival time */ 

double d[chnls];       /* variance in arrival time */ 
double ber[chnls];     /* ber */ 
double wstd[chnls];  /* std dev in chnl wavelength */ 
double tstd[chnls];    /* std dev in arrival time */ 

/* serial 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
int 
FILE 

char 
char 

variables */ 
erfarg; 

T; 
Lc; 
Zc; 
zO; 
dbar; 

n; 
ratio; 
wsep; 
wsepl; 
cijsep; 
lossfac; 
coeff1; 
coeff2; 
x; . 
tvar_n; 
sum; 
dw; 
dwvar; 
maxL; 
maxi; 

/* bit period */ 
/* length for collision */ 
/* distance between collisions */ 
/* soliton period */ 
/* average dispersion value */ 
/* collisions per link length */ 
/* Lc/La */ 
/* adjacent wavelength separation */ 
/* adjacent wavelength separation */ 
/* channel wavelength spacing */ 
/* alpha*La */ 
/* coefficients for computing shift */ 

/* 2.8*ratio */ 
/* n~3/6 */ 

/* sum of harmonic coefficients */ 
/* wavelength shift */ 
/* var in indiv wavelength shifts */ 
/* max sys length given N and tau */ 

/* indice for channel with max jitter */ 
*constfile,*distfile; 

/*' FE arrays for output */ 
buffer[MAXLINE+1];/* buffer for input strings */ 
filename[MAXLINE+1];/* output file name */ 

mainO 
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{ 
int i; /* indices for counting */ 
int j; 
int k; 
int m; 
int h; 

/* get filename for storing constants */ 

printf("Input filename for storing constants: "); 
getline(buffer,MAXLINE,stdin); 
(void) strncpy(filename,buffer,strlen(buffer)-l); 
printf("Opening constants storage file\n"); 
if ((constfile = fopen(filename,"w")) == (FILE *)NULL) { 

printf( "Can't write to data file.\n"); 
exit(l); 

} 

/* get filename for storing length data */ 

printf("Input filename for storing length data: "); 
getline(buffer,MAXLINE,stdin); 

(void) strncpy(filename.buffer,strlen(buffer)-l); 
printf("Opening length storage file\n"); 
if ((distfile = fopen(filename,"w")) == (FILE *)NULL) { 

printf( "Can't write to data file.\n"); 
exit(l); 

} 

/*   for (h=0;h<121;h++) { 
tau = 20.0+((double) h*.25);*/ 

/* compute and define useful values */ 

wsep = (0.3148*wc*wc)/(wduty*tau*c); 
T = tau/tduty; 
lossfac = alpha*La; 

coeffl = 4.0*1.763*lossfac*La*wc*wc/ 
(3.0*M_PI*M_PI*M_PI*tau); 

/* compute wavelengths */ 
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for  (i=0;i<chnls;i++)  { 
w[i]=wc -  wO - wsep*((chnls -  l.)/2.   -  i) ; 
if   (w[i]   < 0)  printf("Wavelength out of range\n"); 

} 
/*        wsepl=0.625; 

w[0]=5.0; 
w[l]=w[0]+wsepl; 
w[2]=w[l]+wsepl; 
w[3]=w[2]+wsepl; 
w[4]=w[3]+wsepl; 
w[5]=w[4]+wsepl; 
w[6]=w[5]+wsepl; 
w[7]=w[6]+wsepl; 
w[8]=w[7]+wsepl; 
w[9]=w[8]+wsepl; 
w[l0]=w[9]+wsepl; 
w[ll]=w[lO]+wsepl; 
w[12]=w[ll]+wsepl; 
w[13]=w[12]+wsepl; 
w[l4]=w[l3]+wsepl; 
w[15]=w[14]+wsepl;*/ 

for  (i=0;i<chnls;i++)  { 
d[i]=w[i]*s0; 

> 

/* begin channel loop */ 

/* defn of dwvar checked in rsrch notebook pg 11-71 */ 

sum=0.0; 
for  (i=0;i<chnls-l;i++)  { 

for  (j=i+l;j<chnls;j++)  { 

cijsep = fabs(w[i]-w[j]) ; 
dbar =  (w[i]+w[j] )*s0/2. ; 

zO = tau/(dbar*wduty*wsep); 
Lc = 2.0*tau/(dbar*cijsep); 
Zc = T/(dbar*cijsep) ; 
ratio = Lc/La; 
x = 2.8*ratio; 
coeff2 = coeffl*coeffl*pow(x,8.0)/(z0*z0); 
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n = L/Zc; 
tvar_n = n*n*n/6.; 
dwvar = 0.0; 
sum = 0.0; 
for (m=l;m<=25;m++) { 

sum += pow(pow((double) m,3.0)/ 
(pow(sinh(m*x),2.0)* 
sqrt(lossfac*lossfac + twopi*twopi*m*m)),2.0); 

} 
dwvar = coeff2*sum*1.0E-10/2.0; 
tvar [i][j]  = dbar*dbar*dbar*dwvar*cijsep; 
tvar__[j][i]  = tvar__[i] [j] ; 
wvar_[i][j]  = n*dwvar/2.; 
wvar_[j][i]  = wvar_[i][j]; 

f printf (constf ile, '7.4. 6f \n*/,4. 6f W/.4. 6f \n'/.4. 6f \n'/.. 6e\n" , 
cijsep,dbar,Lc,zO,dwvar); 

/* f printf (distf ile, "*/..6e\n",dw) ; */ 
} 

} 

/* Variance in each channel is sum of  its variances between each 
other individual channel */ 

for  (i=0;i<chnls;i++)  { 
tvar_[i]  =0.0; 
wvar[i]  =0.0; 

} 

for  (i=0;i<chnls;i++)  { 
for  (j=0;j<chnls;j++)  { 

if  (i==j); 
else { 

wvarCi]  += wvar_[i][j]; 
tvar_[i]  += tvar [i] [j] ; 

} 
} 
tvar[i]   = L*L*L*tvar_[i]/(6.*T); 
erfarg=(double)  0.4*T/sqrt(2.*tvar[i]); 
ber[i]=erfc(erfarg); 

/* f printf (distf ile, '7..6e y..6e\n" ,wvar[i] ,tvar[i] ) ;*/ 
f printf (distf ile, '7.4.3f */.1.2f °/..2e */.. le\n" ,w[i]+w0,d[i] , 
sqrt(tvar[i]) ,ber[i]) ; 
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/* Find which channel has largest jitter and compute maximum 
system length assuming that the allowable jitter is no 
greater than 2*tau, i.e. r=.4 for tduty=.2 */ 

maxi = 0; 
for  (i=l;i<chnls;i++)  { 

if   (tvar_[i]>tvar_[maxi])  maxi =  i; 

maxL=l.4774*tau/pow(tvar_[maxi] ,1./3.); 
fprintf (distfile,'7.3.2f */..3e\n" ,tau,maxL) ; 

/* }*/ 

} /* End of main */ 
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B.3.2     Maximum system lengths      This program computes the 

maximum system length versus r with N constant. 

length.c - 

C program for computing the jitter in both arrival time and 
frequency resulting from WDM soliton collisions in a fiber, 
and for computing the maximum system length for various 

values of the pulse width tau to insure BER<10~-9, where 
the number of channels is constant for all tau. 
All units are in ps, km, nm unless otherwise specified. 

***********************************************************/ 

#include <stdio.h> 
#include <math.h> 

#ifndef T00LS_C 
#include "tools.c" 
#endif 

#ifndef DEFS_H 
«include "defs.h" 
#endif 

/* important parameters for run */ 

»define chnls 32    /* number of chnls */ 
»define tduty (0.2)  /* duty cycle of temporal pulses */ 
«define wduty (0.2)  /* "duty cycle" of spectral pulses */ 
»define La (25.0)   /* amplifier spacing */ 
/♦»define tau (50.0)*/ /* pulse FWHM */ 
»define alpha (0.048 /* loss coefficient km~(-l) */ 
»define wc (1550.0)  /* center wavelength */ 

»define wO (1535.0)  /* zero dispersion wavelength */ 
»define sO (2./30.)  /* dispersion slope in ps/nnT2-km */ 
»define L (10000.0)  /* total link length */ 
»define c (3.0E5)    /* speed of light nm/ps */ 
»define twopi (2.0*M_PI) 

/* array variables */ 
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double wCchnls];   /* channel wavelength */ 
double wvar_[chnls][chnls];/* intermediate variance */ 
double tvar_[chnls];/* intermediate variance */ 
double tvar [chnls][chnls];/* intermediate variance */ 
double wvar[chnls]; /* variance in channel wavelength */ 
double tvar[chnls]; /* variance in arrival time */ 
double wstd[chnls]; /* std dev in chnl wavelength */ 
double tstd[chnls]; /* std dev in arrival time */ 

/* serial 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
int 
FILE 

char 
char 
char 

variables */ 
tau; ' 
T;      /* bit period */ 
Lc;     /* length for collision */ 
Zc;     /* distance between collisions */ 
zO;     /* soliton period */ 
dbar;   /* average dispersion value */ 
n;      /* collisions per link length */ 
ratio;  /* Lc/La */ 
wsep;   /* adjacent wavelength separation */ 
cijsep;  /* channel wavelength spacing */ 
lossfac; /* alpha*La */ 
coeffl;  /* coefficients for computing shift */ 
coeff2; 

x; 
tvar_n; 
sum; 
dw; 
dwvar; 
maxL; 
maxi; 

/* 2.8*ratio */ 
/* n"3/6 */ 

/* sum of harmonic coefficients */ 
/* wavelength shift */ 
/* var in indiv wavelength shifts */ 
/* max sys length given N and tau */ 
/* indice for channel with max jitter */ 

*constfile,*distfile; 
/* FE arrays for output */ 

buffer[MAXLINE+1];/* buffer for input strings */ 
filenamel[MAXLINE+l];/* output file name */ 
filename2[MAXLINE+1];/* output file name */ 

main() 

{ 
int 
int 
int 

i; /* indices for counting */ 

j; 
k; 
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int    m; 
int    h; 

/* get filename for storing constants */ 

printf("Input filename for storing constants: "); 
getline(buffer,MAXLINE,stdin); 
(void) strncpy(filenamel,buffer,strlen(buffer)-l); 
printf("Opening constants storage file\n"); 

if ((constfile = fopen(filenamel,"w")) == (FILE *)NULL) { 
printf( "Can't write to data file.\n"); 
exit(l); 

} 

/* get filename for storing length data */ 

printf("Input filename for storing length data: "); 
getline(buffer.MAXLINE,stdin); 

(void) strncpy(filename2,buffer,strlen(buffer)-l); 
printf("Opening length storage file\n"); 
if ((distfile = fopen(filename2,"w")) == (FILE *)NULL) { 

printf( "Can't write to data file.\n"); 
exit(l); 

} 

for (h=0;h<31;h++) { 
tau = 20.0+(double) h; 

/* compute and define useful values */ 

wsep = (0.3148*wc*wc)/(wduty*tau*c); 
T = tau/tduty; 
lossfac = alpha*La; 

coeffl = 4.0*1.763*lossfac*La*wc*wc/ 

(3.0*M_PI*M_PI*M_PI*tau); 

/* compute wavelengths */ 

for  (i=0;i<chnls;i++)  { 
w[i]=wc - wO - wsep*((chnls -  l.)/2.   -  i); 
if   (w[i]   <  0)   printf("Wavelength out  of  range\n"); 

} 
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/* begin channel loop */ 

/* defn of dwvar checked in rsrch notebook pg 11-71 */ 

sum=0.0; 
for  (i=0;i<chnls-l;i++)  { 

for  Cj-i+1;j<chnls;j++)  { 

cijsep = f abs(w[i]-w[j] ) ; 
dbar =  (w[i]+w[j])*s0/2.; 

zO = tau/(dbar*wduty*wsep); 
Lc = 2.0*tau/(dbar*cijsep); 
Zc = T/(dbar*cijsep); 
ratio = Lc/La; 
x = 2.8*ratio; 
coeff2 = coeffl*coeffI*pow(x,8.0)/(z0*z0); 
n = L/Zc; 
tvar_n = n*n*n/6.; 
dwvar = 0.0; 
sum = 0.0; 
for  (m=l;m<=25;m++)  { 

sum += pow(pow((double)  m,3.0)/ 
(pow(sinh(m*x),2.0)* 
sqrt(lossfac*lossfac + twopi*twopi*m*m)),2.0); 

} 
dwvar =  coeff2*sum*l.OE-10/2.0; 
tvar [i][j]  = dbar*dbar*dbar*dwvar*cijsep; 
tvar__[j][i]  = tvar__[i] [j] ; 
wvar_[i][j]  = n*dwvar/2.; 
wvar_[j][i]  = wvar_[i][j]; 

fprintf(constfileJ"
,/.4.6f\n'/.4.6f\n,/.4.6f\n,/.4.6f\n,/..6e\n,,

J 

cij sep,dbar,Lc,zO,dwvar); 
/* fprintf(distfileJ'7..6e\n"Jdw);*/ 

} 
> 

/* Variance in each channel is  sum of  its variances 
between each other individual channel */ 

for   (i=0;i<chnls;i++)  { 
tvar_[i]   =0.0; 
wvar[i]   =  0.0; 
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> 

for  (i=0;i<chnls;i++)  { 
for  (j=0;j<chnls;j++)  { 

if (i==j); 
else { 

wvar[i]  += wvar_[i][j]; 
tvar_[i]  += tvar [i] [j] ; 

} 
} 
tvar[i] = L*L*L*tvar_[i]/(6.*T); 

/*     fprintf (distfile,'7..6e y..6e\n" ,wvar[i] ,tvar[i]) ;*/ 

} 

/* Find which channel has largest jitter and compute maximum 
system length assuming that the allowable jitter is no 
greater than 2*tau, i.e. r=.4 for tduty=.2 */ 

maxi = 0; 
for  (i=l;i<chnls;i++)  { 

if  (tvar_[i]>tvar_[maxi])  maxi = i; 
} 

maxL=l.4774*tau/pow(tvar_[maxi],1./3.); 
fprintf (distf ile, '7.3 . Of */.. 3e\n" , tau, maxL) ; 

} /* End of main */ 
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B.3.3     System throughput      This program computes the data 

throughput versus r with L constant. 

thrput.c - 
C program for computing the jitter in both arrival time and 
frequency resulting from WDM soliton collisions in a fiber, 
and for computing the throughput for various 
values of the pulse width tau to insure BER<10"-9, where 
the system length is constant for all tau. 
All units are in ps, km, nm unless otherwise specified. 

#include <stdio.h> 
#include <math.h> 

#ifndef T00LS_C 
#include "tools.c" 
#endif 

#ifndef DEFS_H 
#include "defs.h" 
#endif 

/* important parameters for run */ 

#define maxchnls 96 /* number of chnls */ 
#define tduty (0.2) /* duty cycle of temporal pulses */ 
#define wduty (0.333)/* "duty cycle" of spectral pulses */ 
#define La (25.0)   /* amplifier spacing */ 
/*#define tau (50.0)*/ /* pulse FWHM */ 
»define alpha (0.048)/* loss coefficient km~(-l) */ 
#define wc (1550.0) /* center wavelength */ 
#define wO (1535.0) /* zero dispersion wavelength */ 
#define sO (2./30.)  /* dispersion slope in ps/nm"2-km */ 
«define L (10000.0)  /* total link length */ 
#define c (3.0E5)   /* speed of light nm/ps */ 
»define twopi (2.0*M_PI) 

/* array variables */ 
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double w[maxchnls];   /* channel wavelength */ 

double wvar_[maxchnls][maxchnls];/*intermediate variance*/ 
double tvar_[maxchnls];/* intermediate variance */ 
double tvar [maxchnls][maxchnls];/*intermediate variance*/ 
double wvar[maxchnls]; /* variance in channel wavelength */ 
double tvar[maxchnls]; /* variance in arrival time */ 
double wstd[maxchnls]; /* std dev in chnl wavelength */ 
double tstd[maxchnls]; /* std dev in arrival time */ 

/* serial 
double 
int 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
int 
int 
FILE 

char 
char 
char 

variables */ 
tau;    /* pulse intensity FWHM */ 
chnls;  /* number of chnls */ 
T;      /* bit period */ 
Lc;     /* length for collision */ 
Zc;     /* distance between collisions */ 
zO;     /* soliton period */ 
dbar;   /* average dispersion value */ 
n;      /* collisions per link length */ 
ratio;   /* Lc/La */ 
wsep;   /* adjacent wavelength separation */ 
cijsep; /* channel wavelength spacing */ 
lossfac; /* alpha*La */ 
coeffl;  /* coefficients for computing shift */ 
coeff2; 

x;      /* 2.8*ratio */ 
tvar_n;  /* n~3/6 */ 

sum;    /* sum of harmonic coefficients */ 
dw;     /* wavelength shift */ 
dwvar;  /* var in indiv wavelength shifts */ 
thrput;  /* maximum throughput per tau */ 
maxi;   /* indice for channel with max jitter */ 
test;   /* test value for chnl loop */ 
*constfile,*distfile; 

/* FE arrays for output */ 
buffer[MAXLINE+1];/* buffer for input strings */ 
filenamel[MAXLINE+l];/* output file name */ 
filename2[MAXLINE+l];/* output file name */ 

main() 

{ 
int    i; /* indices for counting */ 



205 

int J 
int k 
int m 
int h 

/* get filename for storing constants */ 

printf("Input filename for storing constants: "); 
getline(buffer,MAXLINE,stdin); 
(void) strncpy(filenamel,buffer,strlen(buffer)-l); 
printf("Opening constants storage file\n"); 
if ((constfile = fopen(filenamel,"w")) == (FILE *)NULL) { 

printf( "Can't write to data file.\n"); 
exit(l); 

} 

/* get filename for storing throughput data */ 

printf("Input filename for storing throughput data: "); 
getline(buffer,MAXLINE,stdin); 
(void) strncpy(filename2,buffer,strlen(buffer)-l); 
printf("Opening throughput storage file\n"); 
if ((distfile = fopen(filename2,"w")) == (FILE *)NULL) { 

printf( "Can't write to data file.\n"); 
exit(l); 

} 

chnls=3; 
for (h=0;h<31;h++) { 

tau = 20.0+(double) h; 

test = 0; 
for (chnls=chnls-l;test<l;chnls++) { 

/* compute and define useful values */ 

wsep = (0.3148*wc*wc)/(wduty*tau*c); 
T = tau/tduty; 

lossfac = alpha*La; 
coeffl = 4.0*1.763*lossfac*La*wc*wc/ 

(3.0*M_PI*M_PI*M_PI*tau); 
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/* compute wavelengths */ 

for (i=0;i<chnls;i++) { 
w[i]=wc - wO - wsep*((chnls - l.)/2. - i); 
if (w[i] < 0) printf("Wavelength out of range\n"); 

} 

/* begin channel loop */ 
/* defn of dwvar checked in rsrch notebook pg 11-71 */ 

sum=0.0; 
for (i=0;i<chnls-l;i++) { 

for (j=i+l;j<chnls;j++) { 

cijsep = fabs(w[i]-w[j] ) ; 
dbar =   (w[i]+w[j] )*s0/2 . ; 

zO = tau/(dbar*wduty*wsep); 
Lc = 2.0*tau/(dbar*cijsep); 
Zc = T/(dbar*cijsep); 
ratio = Lc/La; 
x = 2.8*ratio; 
coeff2 = coeffl*coeffl*pow(x,8.0)/(z0*z0); 
n = L/Zc; 
tvar_n = n*n*n/6.; 
dwvar = 0.0; 
sum = 0.0; 
for (m=l;m<=25;m++) { 

sum += pow(pow((double) m,3.0)/ 
(pow(sinh(m*x),2.0)* 
sqrt(lossfac*lossfac '+ twopi*twopi*m*m)),2.0); 

} 
dwvar = coeff2*sum*l.0E-10/2.0; 
tvar [i][j]  = dbar*dbar*dbar*dwvar*cijsep; 
tvar__[j][i]   = tvar__[i] [j] ; 
wvar_[i][j]  = n*dwvar/2.; 
wvar_[j][i]  = wvar_[i][j]; 
/* f printf (distf ile, '"/„.6e\n",dw); */ 

} 
} 

/* Variance in each channel is  sum of  its 
variances between each other  individual channel */ 
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for  (i=0;i<chnls;i++)  { 
tvar_[i]   =0.0; 
wvar[i]  = 0.0; 

} 

for  (i=0;i<chnls;i++)  { 
for  (j=0;j<chnls;j++)  { 

if   (i==j); 
else { 

wvar[i]  += wvar_[i][j]; 
tvar_[i]  += tvar [i] [j] ; 

} 
} 
tvar[i] = L*L*L*tvar_[i]/(6.*T); 

/*     fprintf(distfile,'7..6e 7..6e\n" ,wvar[i] ,tvar[i] ) ;*/ 

> 

/* Find which channel has largest jitter and compute maximum 
system length assuming that the allowable jitter is no 
greater than 2*tau, i.e. r=.4 for tduty=.2 */ 

maxi = 0; 
for  (i=l;i<chnls;i++)  { 

if   (tvar[i]>tvar[maxi]) maxi = i; 
} 

if   (chnls == maxchnls)   { 
test=l;  /* stop */ 
h=31;  /* computation */ 
printf("Maximum number of channels reached\n"); 

} 
if (tvar[maxi] > pow(0.4*T/6.1,2.0)) { 
test = 1; 
thrput = (double) (chnls - l.)*1000./T;  /* in Gb/s */ 
f printf (distfile,'7.3d %3 . If '/. .3e\n" ,chnls-l, tau, thrput) ; 

} 

} 
} 

} /* End of main */ 


